‘壹’ 布朗运动的金融数学
将布朗运动与股票价格行为联系在一起,进而建立起维纳过程的数学模型是本世纪的一项具有重要意义的金融创新,在现代金融数学中占有重要地位。迄今,普遍的观点仍认为,股票市场是随机波动的,随机波动是股票市场最根本的特性,是股票市场的常态。
布朗运动假设是现代资本市场理论的核心假设。现代资本市场理论认为证券期货价格具有随机性特征。这里的所谓随机性,是指数据的无记忆性,即过去数据不构成对未来数据的预测基础。同时不会出现惊人相似的反复。随机现象的数学定义是:在个别试验中其结果呈现出不确定性;在大量重复试验中其结果又具有统计规律性的现象。描述股价行为模型之一的布朗运动之维纳过程是马尔科夫随机过程的一种特殊形式;而马尔科夫过程是一种特殊类型的随机过程。随机过程是建立在概率空间上的概率模型,被认为是概率论的动力学,即它的研究对象是随时间演变的随机现象。所以随机行为是一种具有统计规律性的行为。股价行为模型通常用着名的维纳过程来表达。假定股票价格遵循一般化的维纳过程是很具诱惑力的,也就是说,它具有不变的期望漂移率和方差率。维纳过程说明只有变量的当前值与未来的预测有关,变量过去的历史和变量从过去到现在的演变方式则与未来的预测不相关。股价的马尔科夫性质与弱型市场有效性(the weak form of market efficiency)相一致,也就是说,一种股票的现价已经包含了所有信息,当然包括了所有过去的价格记录。但是当人们开始采用分形理论研究金融市场时,发现它的运行并不遵循布朗运动,而是服从更为一般的几何布朗运动(geometric browmrian motion)。
‘贰’ 布朗运动是什么
布朗运动的特点是布朗粒子的位移分布和粒子数密度分布都满足扩散现象的规律。这说明在粒子浓度不均匀时发生的扩散现象,其本质是粒子的布朗运动产生了位移。在实际的技术应用中,扩散技术相当引人重视。 在半导体集成电路制造过程中,常用扩散方法将特定杂质引入半导体的预定部位,以形成器件或组件,使其具有设计的电路功能。扩散过程是在较高温度下进行的,杂质原子通过晶体中的缺陷(空位或填隙原子)而迁移。所以,作布朗运动的粒子不只有尺度在微米级的颗粒,也可能是原子或分子。布朗粒子的运动特点是具有随机性和偶然性。 在离子晶体中有正、负两种离子,同时存在正、负离子空位,正、负离子就是通过这些空位来扩散的。由于这种运动是随机的和无规则的,各个方向迁移的概率相同,因此,带电粒子的布朗运动不会产生电流。但是如果加上恒定电场,离子运动就会在随机的无规则的迁移之上加一项定向运动,从而能传导电流。 由于作热运动的大量介质分子(原子)对宏观小物体的无规碰撞导致随机运动引起的涨落,这种涨落以布朗运动为代表,所以布朗运动的实质是涨落。 电路中也有涨落现象,譬如电流、电压的涨落,经过线路放大,产生噪声。在导体中电子的热运动是无规则的,有外电场时,在平均电流的背景上,还有一部分涨落电流,它使电信号产生噪声。 在爱因斯坦关于布朗运动的论文发表之前,1900年法国数学家巴施里叶发表了论述股票的论文《投机理论》,认为根据当前的股价并不能确切知道下一时刻的股价,而只知道下一时刻股价的概率分布。他对股票价格的不规则波动构造了一个数学模型,这个模型与1905年爱因斯坦为布朗运动所建立的模型一致。后来,“股票价格比例变化是一种布朗运动”成为金融研究中的一个普遍假设。
‘叁’ 什么是二叉树模型
二项期权定价模型(binomal
option
price
model,SCRR
Model,BOPM)
Black-Scholes期权定价模型
虽然有许多优点,
但是它的推导过程难以为人们所接受。在1979年,
罗斯等人使用一种比较浅显的方法设计出一种期权的定价模型,
称为二项式模型(Binomial
Model)或二叉树法(Binomial
tree)。
满意请采纳
‘肆’ 随机漫步理论是什么
股票的价格遵循正态分布规律,即大部分股票升跌幅度很窄,约为10%~30%,处于中间高端位置。暴涨100%以上和暴跌100%以下的股票是极少数,它们处于两头低端位置。所以买卖股票是否输赢很大程度上取决于人的运气。股市上的信息全是公开的,如:价格、成交量、每股收益等。因此,根据理性的技术图表分析,大部分股民不会以20元去买一个价值仅为1元,甚至亏损的股票。当然也不会以低价买出某价值高的绩优股票。也正是这些公开信息导致的理性分析,实际是无效的分析,结果往往事与愿违。
‘伍’ 二叉树期权定价模型的二叉树思想
1:Black-Scholes方程模型优缺点:
优点:对欧式期权,有精确的定价公式;
缺点:对美式期权,无精确的定价公式,不可能求出解的表达式,而且数学推导和求解过程在金融界较难接受和掌握。
2:思想:
假定到期且只有两种可能,而且涨跌幅均为10%的假设都很粗略。修改为:在T分为狠多小的时间间隔Δt,而在每一个Δt,股票价格变化由S到Su或Sd。如果价格上扬概率为p,那么下跌的概率为1-p。
3:u,p,d的确定:
由Black-Scholes方程告诉我们:可以假定市场为风险中性。即股票预期收益率μ等于无风险利率r,故有:
SerΔt = pSu + (1 − p)Sd(23)
即:e^{rDelta t}=pu+(1-p)d=E(S)(24)
又因股票价格变化符合布朗运动,从而 δS N(rSΔt,σS√Δt)(25)
=>D(S) = σ2S2δt;
利用D(S) = E(S2) − (E(S))2
E(S2) = p(Su)2 + (1 − p)(Sd)2
=>σ2S2Δt = p(Su)2 + (1 − p)(Sd)2 − [pSu + (1 − p)Sd]2
=>σ2Δt = p(u)2 + (1 − p)(d)2 − [pu + (1 − p)d]2(26)
又因为股价的上扬和下跌应满足:ud=1(27)
由(24),(26),(27)可解得:
其中:a = erδt。
4:结论:
在相等的充分小的Δt时段内,无论开始时股票价格如何。由(28)~(31)所确定的u,d和p都是常数。(即只与Δt,σ,r有关,而与S无关)。
‘陆’ 假设股票价格服从几何布朗运动, 那么里面的sigma定义是什么
定义是不是(S(t+dt)-S(t))/(S(t)*dt) 的standard deviation? 如果是这个,它的量纲就应该是t^-1, 不过从几何布朗运动的模型中看的话又应该是t^-0.5, 因为dW是t^0.5的量纲才对.谢谢了!
‘柒’ 期权定价模型中的二叉树模型里面有个数字不懂如何来的
二项期权定价模型假设股价波动只有向上和向下两个方向,且假设在整个考察期内,股价每次向上(或向下)波动的概率和幅度不变。模型将考察的存续期分为若干阶段,根据股价的历史波动率模拟出正股在整个存续期内所有可能的发展路径,并对每一路径上的每一节点计算权证行权收益和用贴现法计算出的权证价格。对于美式权证,由于可以提前行权,每一节点上权证的理论价格应为权证行权收益和贴现计算出的权证价格两者较大者。
构建二项式期权定价模型
编辑
1973年,布莱克和舒尔斯(Black and Scholes)提出了Black-Scholes期权定价模型,对标的资产的价格服从对数正态分布的期权进行定价。随后,罗斯开始研究标的资产的价格服从非正态分布的期权定价理论。1976年,罗斯和约翰·考科斯(John Cox)在《金融经济学杂志》上发表论文“基于另类随机过程的期权定价”,提出了风险中性定价理论。
1979年,罗斯、考科斯和马克·鲁宾斯坦(Mark Rubinstein)在《金融经济学杂志》上发表论文“期权定价:一种简化的方法”,该文提出了一种简单的对离散时间的期权的定价方法,被称为Cox-Ross-Rubinstein二项式期权定价模型。
二项式期权定价模型和布莱克-休尔斯期权定价模型,是两种相互补充的方法。二项式期权定价模型推导比较简单,更适合说明期权定价的基本概念。二项式期权定价模型建立在一个基本假设基础上,即在给定的时间间隔内,证券的价格运动有两个可能的方向:上涨或者下跌。虽然这一假设非常简单,但由于可以把一个给定的时间段细分为更小的时间单位,因而二项式期权定价模型适用于处理更为复杂的期权。
随着要考虑的价格变动数目的增加,二项式期权定价模型的分布函数就越来越趋向于正态分布,二项式期权定价模型和布莱克-休尔斯期权定价模型相一致。二项式期权定价模型的优点,是简化了期权定价的计算并增加了直观性,因此现在已成为全世界各大证券交易所的主要定价标准之一。
一般来说,二项期权定价模型的基本假设是在每一时期股价的变动方向只有两个,即上升或下降。BOPM的定价依据是在期权在第一次买进时,能建立起一个零风险套头交易,或者说可以使用一个证券组合来模拟期权的价值,该证券组合在没有套利机会时应等于买权的价 格;反之,如果存在套利机会,投资者则可以买两种产品种价格便宜者,卖出价格较高者,从而获得无风险收益,当然这种套利机会只会在极短的时间里存在。这一 证券组合的主要功能是给出了买权的定价方法。与期货不同的是,期货的套头交易一旦建立就不用改变,而期权的套头交易则需不断调整,直至期权到期。
二叉树思想
编辑
1:Black-Scholes方程模型优缺点:
优点:对欧式期权,有精确的定价公式;
缺点:对美式期权,无精确的定价公式,不可能求出解的表达式,而且数学推导和求解过程在金融界较难接受和掌握。
2:思想:
假定到期且只有两种可能,而且涨跌幅均为10%的假设都很粗略。修改为:在T分为狠多小的时间间隔Δt,而在每一个Δt,股票价格变化由S到Su或Sd。如果价格上扬概率为p,那么下跌的概率为1-p。
3:u,p,d的确定:
由Black-Scholes方程告诉我们:可以假定市场为风险中性。即股票预期收益率μ等于无风险利率r,故有:
SerΔt = pSu + (1 − p)Sd(23)
即:e^{r\Delta t}=pu+(1-p)d=E(S)(24)
又因股票价格变化符合布朗运动,从而 δS N(rSΔt,σS√Δt)(25)
=>D(S) = σ2S2δt;
利用D(S) = E(S2) − (E(S))2
E(S2) = p(Su)2 + (1 − p)(Sd)2
=>σ2S2Δt = p(Su)2 + (1 − p)(Sd)2 − [pSu + (1 − p)Sd]2
=>σ2Δt = p(u)2 + (1 − p)(d)2 − [pu + (1 − p)d]2(26)
又因为股价的上扬和下跌应满足:ud=1(27)
由(24),(26),(27)可解得:
其中:a = erδt。
4:结论:
在相等的充分小的Δt时段内,无论开始时股票价格如何。由(28)~(31)所确定的u,d和p都是常数。(即只与Δt,σ,r有关,而与S无关)。
‘捌’ 几何布朗运动的在金融中的应用
主条目:布莱克-舒尔斯模型
几何布朗运动在布莱克-舒尔斯定价模型被用来定性股票价格,因而也是最常用的描述股票价格的模型 。
使用几何布朗运动来描述股票价格的理由: 几何布朗运动的期望与随机过程的价格(股票价格)是独立的, 这与我们对现实市场的期望是相符的 。 几何布朗运动过程只考虑为正值的价格, 就像真实的股票价格。 几何布朗运动过程与我们在股票市场观察到的价格轨迹呈现了同样的“roughness” 。 几何布朗运动过程计算相对简单。. 然而,几何布朗运动并不完全现实,尤其存在一下缺陷: 在真实股票价格中波动随时间变化 (possiblystochastically), 但是在几何布朗运动中, 波动是不随时间变化的。 在真实股票价格中, 收益通常不服从正态分布 (真实股票收益有更高的峰度('fatter tails'), 代表了有可能形成更大的价格波动).