㈠ 什么是ITO定理
伊藤过程
控制论
的发明人维纳在1923年指出,布朗运动在数学上是一个随机过程,提出了用“随机微分方程”来描述,因此人们也把布朗运动称为维纳过程;
日本
数学家伊藤发展建立了带有布朗运动干扰项的随机微分方程,
dx(t)=μ(t,x)dt+σ(t,x)dB
σ(t,x)是干扰强度,μ(t,x)是漂移率
该方程描写的过程是伊藤过程。伊藤过程可看成为一般化的维纳过程,它直接把布朗运动理解为随机干扰,从而赋予了布朗运动最一般的意义。
布朗运动是随机涨落的典型现象, 一般地说,许许多多的宏观观测,都要受到布朗运动的限制. 法国经济学家Bachelier L把股价的变动理想化为布朗运动,在此基础上,经济学家把伊藤过程方程用于描写股票价格)(!)行为过程的一种模式,为更确切地描写股票价格的行为过程,伊藤过程方程被修正为
dS(t)/S(t)=μdt+σdB
其中σ为股票价格波动率、 μ为股票价格的预期收益率,人们把它称为股价方程,它是一个随机微分方程.由伊藤过程描述的股价方程是一个正向的随机微分方程,从确定的S(0)=S0出发,根据布朗运动
的随机变量B(t)在0-t之间的形态,来推断轨线的统计行为.
㈡ 求经济B-S期权定价模型的原理还有计算方法
假定股票价格服从几何布朗运动,即dSt/St=μdt+σdWt. St为t时点股票价格,μ为漂移量,σ为波动率,Wt为标准布朗运动。使用伊藤公式。然后用无套利原理求得BSPDE。
㈢ 几何布朗运动的几何布朗运动的特性
给定初始值S0,根据伊藤积分,上面的 SDE(【数】随机微分方程式)
有如下解: St=S0exp((μ−σ22)t+σWt), 对于任意值 t,这是一个对数正态分布随机变量,其期望值和方差分别是 E(St)=S0eμt, Var(St)=S20e2μt(eσ2t−1), 也就是说St的概率密度函数是: fSt(s;μ,σ,t)=12π−−√1sσt√exp⎛⎝⎜⎜−(lns−lnS0−(μ−12σ2)t)22σ2t⎞⎠⎟⎟. 根据伊藤引理,这个解是正确的。
比如,考虑随机过程 log(St). 这是一个有趣的过程,因为在布莱克-舒尔斯模型中这和股票价格的对数回报率相关。对f(S) = log(S)应用伊藤引理,得到 dlog(S)=f′(S)dS+12f′′(S)S2σ2dt=1S(σSdWt+μSdt)−12σ2dt=σdWt+(μ−σ2/2)dt. 于是Elog(St)=log(S0)+(μ−σ2/2)t.
这个结果还有另一种方法获得:applying the logarithm to the explicit solution of GBM: log(St)=log(S0exp((μ−σ22)t+σWt))=log(S0)+(μ−σ22)t+σWt. 取期望值,获得和上面同样的结果:Elog(St)=log(S0)+(μ−σ2/2)t.
㈣ 几何布朗运动
问题一:几何布朗运动的均值函数怎么求 设布朗运动为B(t),布朗运动本身是正态分布,而且满足分布~N(0,t).几何布朗运动是W(t)=exp(B(t));这是一个很好的线性对应关系.所以均值就是(如图)
解这个简单的积分,就得到均值:exp(t/2) 顺便方差也求了吧:exp(2t)-exp(t)
问题二:请问如何用R语言做大量次数的几何布朗运动的模拟(参数μ,σ已知) 10分 这上网搜应该搜的到吧,比如这篇文章
股票价格行为关于几何布朗运动的模拟--基于中国上证综指的实证研究
,照着几何布朗运动的公式直接写代码应该就行了吧,代码逻辑都很清晰。
下面是照着这片文章模拟一次的代码,模拟多次的话,外面再套个循环应该就行了。然后再根据均方误差(一般用这个做准则的多)来挑最好的。
话说你的数据最好别是分钟或者3s切片数据,不然R这速度和内存够呛。
N 问题三:研究衍生品的时候为什么用几何布朗运动来模拟股票价格的运行轨迹 其实很简单,GBM(至少在一定程度上)符合人们对市场的观察。例如,直观的说,股票的价格看起来很像随机游走,再例如,股票价格不会为负,这样起码GBM比普通的布朗运动合适,因为后者是可以为负的。
再稍微复杂一点,对收益率做测试( S(t)/S(t-1) - 1)做测试,发现,哎居然还基本是个正态分布。收益率是正态的,股价就是GBM模型
总之,就是大家做了很多统计测试,发现假设成GBM还能很好的逼近真实数值,比较接近事实。所以就用这个。
其实将精确的数学模型应用到金融的时间非常短。最早是1952年的Markowitz portfolio selection. 那个其实就是一个简单的优化问题。后来的CAPM APT等诸多模型,也仅仅研究的是一系列证券,他们之间回报、收益率以及其他影响因素关系,没有涉及到对股价运动的描述。
第一次提出将股价是GBM应用在严格模型的是black-scholes model 。在这个模型中提出了若干个假设,其中一个就是股价是GBM的。
问题四:如何确定几何布朗运动模型中的参数 几何布朗运动只是模型,是 exp{Bt }这样的形式。你用模型什么事是关键,确定参数,在英文中叫calibration.
如果你是用 geometric brownian motion 去模型options, 这样的东西,是关系你的模型本身,比如black-scholes模型,关于它的参数calibration,这样的技术其实已经很完备,经典的金融数学教科书上都有的,其主要是根据市场上option的价格反推出模型的参数的。
㈤ 几何布朗运动
一、正态随机变量概率密度函数描述:
(μ为总体均数、σ为标准差)
二、布朗运动的数学描述:
价格时间函数P(x),T+t时刻的价格P(T+t)与T时刻价格P(T)的差值:P(T+t)-P(T)是一个正态随机变量,分布的平均期望值μt,标准差为。(T>0,t>0)
重大缺陷:
1、按此价格理论上可有负值,但实际中价格不可能存在负值。
2、不论价格初值为何值,固定时间长度的价格差具有相同的正态分布,不符合常理。
三、几何布朗运动:
把价格差改为价格的涨跌幅:可以避免直接使用布朗运动描述价格的缺陷,即为几何布朗运动。
是一个正态随机变量,分布的平均期望值μt,标准差为。(T>0,t>0)
******************
几何布朗运动
几何布朗运动的作用是用来模拟股价的变动。它的好处在于,一般形式布朗运动中取值可能为负数,而几何布朗运动取值永远不小于0,这一点符合股价永远不为负的特征。
几何布朗运动微分形式的表述。或者称SDE(随机微分方程)形式:
其中的S(t)可以理解为股价。
几何布朗运动函数形式表述:
上述式子告诉我们,可以先生成一服从的一般形式布朗运动,然后求其指数函数,最后乘以S(0),即期初的股价,就可以得到几何布朗运动。
补充:为何这里t的系数多出一项?具体可以参考伊藤公式。
欢迎求助 三个人的团儿!!!
㈥ 证券价格服从漂移参数0.05,波动参数0.3的几何布朗运动,当前价格为95,利率是4% 假设有种
根据题目,若假设有种新型投资,若购买该投资后六个月内证券价格至少为105,并且购买一年后的价格至少和六个月时价格一样多,那么这种投资一年后的收益为50。
几何布朗运动 (GBM)(也叫做指数布朗运动)是连续时间情况下的随机过程,其中随机变量的对数遵循布朗运动。[1]几何布朗运动在金融数学中有所应用,用来在布莱克-斯科尔斯模型(Black-Scholes 模型)中模拟股票价格。本题中,若若假设有种新型投资,若购买该投资后六个月内证券价格至少为105,并且购买一年后的价格至少和六个月时价格一样多,那么计算为:50乘exp(-0.04)再乘【S(1/2)>105的概率】再乘【S(1)>S(1/2)的概率,则这种投资一年后的收益为50。
拓展资料:
1.常见随机过程介绍
1)几何布朗运动(GBM):这个过程被Black-Scholes(1973)引入到期权定价文献中,虽然这个过程有一些缺陷,并且与实证研究存在着冲突,但是仍然是一种期权和衍生品估值过程的基础过程。
2)CIR模型:平方根扩散过程,这种过程由Cox,Ingersoll和Ross(1985)所提出,用于对均值回复的数量,例如利率或波动率进行建模,除了均值回复的特性以外,这个过程还是保持为正数。
3)跳跃扩散过程(Jump Diffusion):首先由Merton(1976)所给出,为几何布朗运动增加了对数正态分布的条约成分,这允许我们考虑,例如,短期虚值(OTM)的期权通常需要在较大条约的可能性下定价。换句话说,依赖GBM作为金融模型通常不能解释这种OTM的期权的价格,而跳跃扩散过程可能很好的解释。
4)Heston模型:是由Steven Heston(1993)提出的描述标的资产波动率变化的数学模型。Heston模型是一个随机波动模型,这种模型假设资产收益率的波动率并不恒定,也不确定,而是跟随一个随机过程来运动。
5)SABR模型:SABR 模型是由Hagan(2002)提出的一种随机波动率模型,在抛弃了原始的BSM模型中对于波动率为某一常数的假定,假设隐含波动率同样是符合几何布朗运动的,并且将隐含波动率设定为标的价格和合约行权价的函数,结合了隐含波动率修正模型的两种思路(随机波动率模型和局部波动率模型),更为准确的动态刻画出吻合市场特征的隐含波动率曲线。