Ⅰ 已知某股票的一年以后价格X服从对数正态分布,当前价格为十元,且期望为15,方差为4,。求其连续复合年收益
鉴于以上3个楼层的搞笑,我算了下看图
Ⅱ 为什么说股票价格服从对数正态分布
我们可以假设连续复利,用lnS1-lnS0来近似股票的收益(S1-S0)/S0,而且根据集合布朗运动可知,此收益是服从正态分布的。
Ⅲ 如何理解 Black-Scholes 期权定价模型
Black-Scholes-Merton期权定价模型(Black-Scholes-Merton Option Pricing Model),即布莱克-斯克尔斯期权定价模型。
1997年10月10日,第二十九届诺贝尔经济学奖授予了两位美国学者,哈佛商学院教授罗伯特·默顿(Robert Merton)和斯坦福大学教授迈伦·斯克尔斯(Myron Scholes),同时肯定了布莱克的杰出贡献。
斯克尔斯与他的同事、已故数学家费雪·布莱克(Fischer Black)在70年代初合作研究出了一个期权定价的复杂公式。与此同时,默顿也发现了同样的公式及许多其它有关期权的有用结论。默顿扩展了原模型的内涵,使之同样运用于许多其它形式的金融交易。
Ⅳ 为什么假设股票价格服从正态分布是不现实的
有一个最基本的想法,如果股票符合正态分布,那么,会怎样?因为趋势已定,所有人都可以在股票价格变动前预测到股票将来的价格走势。投资将成为一件没有任何意义的事情。
另外,股票价格会受到企业的发展、经济的环境、政策的走势以及人们的心理波动影响。所以,其价格出现非规律变化、非正太分布的波动是非常正常的。
Ⅳ 股市K线中的正态分部是什么
一种概率分布。正态分布是具有两个参数μ和σ2的连续型随机变量的分布,第一参数μ是服从正态分布的随机变量的均值,第二个参数σ2是此随机变量的方差,所以正态分布记作N(μ,σ2 )。 服从正态分布的随机变量的概率规律为取与μ邻近的值的概率大 ,而取离μ越远的值的概率越小;σ越小,分布越集中在μ附近,σ越大,分布越分散。正态分布的密度函数的特点是:关于μ对称,在μ处达到最大值,在正(负)无穷远处取值为0,在μ±σ处有拐点。它的形状是中间高两边低 ,图像是一条位于x轴上方的钟形曲线。当μ=0,σ2 =1时,称为标准正态分布,记为N(0,1)。μ维随机向量具有类似的概率规律时,称此随机向量遵从多维正态分布。多元正态分布有很好的性质,例如,多元正态分布的边缘分布仍为正态分布,它经任何线性变换得到的随机向量仍为多维正态分布,特别它的线性组合为一元正态分布。
正态分布最早由A.棣莫弗在求二项分布的渐近公式中得到。C.F.高斯在研究测量误差时从另一个角度导出了它。P.S.拉普拉斯和高斯研究了它的性质。
生产与科学实验中很多随机变量的概率分布都可以近似地用正态分布来描述。例如,在生产条件不变的情况下,产品的强力、抗压强度、口径、长度等指标;同一种生物体的身长、体重等指标;同一种种子的重量;测量同一物体的误差;弹着点沿某一方向的偏差;某个地区的年降水量;以及理想气体分子的速度分量,等等。一般来说,如果一个量是由许多微小的独立随机因素影响的结果,那么就可以认为这个量具有正态分布(见中心极限定理)。从理论上看,正态分布具有很多良好的性质 ,许多概率分布可以用它来近似;还有一些常用的概率分布是由它直接导出的,例如对数正态分布、t分布、F分布等。
Ⅵ 毕苏期权定价模式
毕苏期权定价模式是一个参照模型,也叫B-S定价模式,是指如果某权证的价格偏离了该模型的计算值,就有无风险套利的机会。
一、毕苏期权定价模型中无风险利率必须是连续复利形式。一个简单的或不连续的无风险利率(设为r0)一般是一年复利一次,而r要求利率连续复利。r0必须转化为r方能代入上式计算。两者换算关系为:r = ln(1 + r0)或r0=Er-1。例如r0=0.06,则r=ln(1+0.06)=0.0583,即100以5.83%的连续复利投资第二年将获106,该结果与直接用r0=0.06计算的答案一致。
二、期权有效期T的相对数表示,即期权有效天数与一年365天的比值。如果期权有效期为100天,则T=100/365=0.274 。
Ⅶ 如果用matlab验证股票的收盘价符合对数正态分布
先导入数据,然后取收盘价的对数值即y=ln(y)
clc;clear
y=ln(y)
Std=std(y) %标准差
[F,XI]=ksdensity(y)
figure(1)
plot(XI,F,'o-')
x =randn(300000,1);
figure(2)
[f,xi] = ksdensity(x);
plot(xi,f);
画出概率分布图
ksdensity -------------------- Kernel smoothing density estimation.
表示核平滑密度估计