❶ 股票价格的随机游走的含义
随机游走模型的提出是与证券价格的变动模式紧密联系在一起的。最早使用统计方法分析收益率的着作是在 1900年由路易·巴舍利耶(Louis Bachelier)发表的,他把用于分析赌博的方法用于股票、债券、期货和期权。在巴舍利耶的论文中,其具有开拓性的贡献就在于认识到随机游走过程是布 朗运动。1953年,英国统计学家肯德尔在应用时间序列分析研究股票价格波动并试图得出股票价格波动的模式时,得到了一个令人大感意外的结论:股票价格没 有任何规律可寻,它就象“一个醉汉走步一样,几乎宛若机会之魔每周仍出一个随机数字,把它加在目前的价格上,以此决定下一周的价格。”即股价遵循的是随机 游走规律。
这也跟市场有效原则有关
弱有效证券市场是指证券价格能够充分反映价格历史序列中包含的所有信息,如有关证券的价格、交易量等。如果这些历史信息对证券价格变动都不会产生任何影响,则意味着证券市场达到了弱有效。
❷ 证券价格服从漂移参数0.05,波动参数0.3的几何布朗运动,当前价格为95,利率是4% 假设有种
根据题目,若假设有种新型投资,若购买该投资后六个月内证券价格至少为105,并且购买一年后的价格至少和六个月时价格一样多,那么这种投资一年后的收益为50。
几何布朗运动 (GBM)(也叫做指数布朗运动)是连续时间情况下的随机过程,其中随机变量的对数遵循布朗运动。[1]几何布朗运动在金融数学中有所应用,用来在布莱克-斯科尔斯模型(Black-Scholes 模型)中模拟股票价格。本题中,若若假设有种新型投资,若购买该投资后六个月内证券价格至少为105,并且购买一年后的价格至少和六个月时价格一样多,那么计算为:50乘exp(-0.04)再乘【S(1/2)>105的概率】再乘【S(1)>S(1/2)的概率,则这种投资一年后的收益为50。
拓展资料:
1.常见随机过程介绍
1)几何布朗运动(GBM):这个过程被Black-Scholes(1973)引入到期权定价文献中,虽然这个过程有一些缺陷,并且与实证研究存在着冲突,但是仍然是一种期权和衍生品估值过程的基础过程。
2)CIR模型:平方根扩散过程,这种过程由Cox,Ingersoll和Ross(1985)所提出,用于对均值回复的数量,例如利率或波动率进行建模,除了均值回复的特性以外,这个过程还是保持为正数。
3)跳跃扩散过程(Jump Diffusion):首先由Merton(1976)所给出,为几何布朗运动增加了对数正态分布的条约成分,这允许我们考虑,例如,短期虚值(OTM)的期权通常需要在较大条约的可能性下定价。换句话说,依赖GBM作为金融模型通常不能解释这种OTM的期权的价格,而跳跃扩散过程可能很好的解释。
4)Heston模型:是由Steven Heston(1993)提出的描述标的资产波动率变化的数学模型。Heston模型是一个随机波动模型,这种模型假设资产收益率的波动率并不恒定,也不确定,而是跟随一个随机过程来运动。
5)SABR模型:SABR 模型是由Hagan(2002)提出的一种随机波动率模型,在抛弃了原始的BSM模型中对于波动率为某一常数的假定,假设隐含波动率同样是符合几何布朗运动的,并且将隐含波动率设定为标的价格和合约行权价的函数,结合了隐含波动率修正模型的两种思路(随机波动率模型和局部波动率模型),更为准确的动态刻画出吻合市场特征的隐含波动率曲线。
❸ 布朗运动是什么
布朗运动的特点是布朗粒子的位移分布和粒子数密度分布都满足扩散现象的规律。这说明在粒子浓度不均匀时发生的扩散现象,其本质是粒子的布朗运动产生了位移。在实际的技术应用中,扩散技术相当引人重视。 在半导体集成电路制造过程中,常用扩散方法将特定杂质引入半导体的预定部位,以形成器件或组件,使其具有设计的电路功能。扩散过程是在较高温度下进行的,杂质原子通过晶体中的缺陷(空位或填隙原子)而迁移。所以,作布朗运动的粒子不只有尺度在微米级的颗粒,也可能是原子或分子。布朗粒子的运动特点是具有随机性和偶然性。 在离子晶体中有正、负两种离子,同时存在正、负离子空位,正、负离子就是通过这些空位来扩散的。由于这种运动是随机的和无规则的,各个方向迁移的概率相同,因此,带电粒子的布朗运动不会产生电流。但是如果加上恒定电场,离子运动就会在随机的无规则的迁移之上加一项定向运动,从而能传导电流。 由于作热运动的大量介质分子(原子)对宏观小物体的无规碰撞导致随机运动引起的涨落,这种涨落以布朗运动为代表,所以布朗运动的实质是涨落。 电路中也有涨落现象,譬如电流、电压的涨落,经过线路放大,产生噪声。在导体中电子的热运动是无规则的,有外电场时,在平均电流的背景上,还有一部分涨落电流,它使电信号产生噪声。 在爱因斯坦关于布朗运动的论文发表之前,1900年法国数学家巴施里叶发表了论述股票的论文《投机理论》,认为根据当前的股价并不能确切知道下一时刻的股价,而只知道下一时刻股价的概率分布。他对股票价格的不规则波动构造了一个数学模型,这个模型与1905年爱因斯坦为布朗运动所建立的模型一致。后来,“股票价格比例变化是一种布朗运动”成为金融研究中的一个普遍假设。
❹ 布朗运动的金融数学
将布朗运动与股票价格行为联系在一起,进而建立起维纳过程的数学模型是本世纪的一项具有重要意义的金融创新,在现代金融数学中占有重要地位。迄今,普遍的观点仍认为,股票市场是随机波动的,随机波动是股票市场最根本的特性,是股票市场的常态。
布朗运动假设是现代资本市场理论的核心假设。现代资本市场理论认为证券期货价格具有随机性特征。这里的所谓随机性,是指数据的无记忆性,即过去数据不构成对未来数据的预测基础。同时不会出现惊人相似的反复。随机现象的数学定义是:在个别试验中其结果呈现出不确定性;在大量重复试验中其结果又具有统计规律性的现象。描述股价行为模型之一的布朗运动之维纳过程是马尔科夫随机过程的一种特殊形式;而马尔科夫过程是一种特殊类型的随机过程。随机过程是建立在概率空间上的概率模型,被认为是概率论的动力学,即它的研究对象是随时间演变的随机现象。所以随机行为是一种具有统计规律性的行为。股价行为模型通常用着名的维纳过程来表达。假定股票价格遵循一般化的维纳过程是很具诱惑力的,也就是说,它具有不变的期望漂移率和方差率。维纳过程说明只有变量的当前值与未来的预测有关,变量过去的历史和变量从过去到现在的演变方式则与未来的预测不相关。股价的马尔科夫性质与弱型市场有效性(the weak form of market efficiency)相一致,也就是说,一种股票的现价已经包含了所有信息,当然包括了所有过去的价格记录。但是当人们开始采用分形理论研究金融市场时,发现它的运行并不遵循布朗运动,而是服从更为一般的几何布朗运动(geometric browmrian motion)。
❺ 为什么用几何布朗运动描述股票价格
几何布朗运动就是物理中典型的随机运动,其特点就是不可预测,而在股市中的短期股票价格也是不可预测。
❻ 平价关系式中可以说一种资产是什么
在20世纪70年代初,费希尔·布莱克( Fisher black)、迈伦·斯科尔斯( Myron Scholes)和罗伯特·默顿( Robert Merton)在对欧式股票期权定价研究方面取得了重大的理论突破,提出了针对欧式期权定价的模型,该模型被称为布莱克-斯科尔斯-默顿模型(简称BSM模型)。
模型假设:
在推导出布莱克斯科尔斯-默顿模型时,有以下7个假设前提条件:
一是假设基础资产的股票价格服从几何布朗过程;二是可以卖空证券,并且可以完全运用卖空所获得的资金;三是无交易费用和无税收,所有证券均可无限分割;四是在期权期限内,基础资产无期间收入(比如股票不支付股息);五是市场不存在无风险套利机会;六是证券交易是连续进行的;七是短期无风险利率是一个常数,并对所有期限都是相同的。
微分方程:
此外,模型在推导过程中运用到了一个很重要的微分方程,具体就是
微分方程
其中,式子中的 f 表示看涨期权价格,S表示期权基础资产的价格,r为连续复利的无风险收益率,σ为基础资产价格百分比变化(收益率)的波动率,t是时间变量。
定价公式:
欧式看涨期权的定价公式
看涨期权定价公式
通过看涨-看跌平价关系式,可以得到看跌期权的定价公式:
看跌期权定价公式
其中:
d的计算
c与p分别代表欧式看涨、看跌期权的价格,S0是基础资产在初始0时刻的价格,K是期权的执行价格,r是连续复利的无风险收益率,σ为基础资产价格百分比变化(收益率)的年化波动率,T是期权合约的期限(单位是年),N()表示累积标准正态分布的概率密度。
代码实现基于布莱克-斯科尔斯-默顿模型计算欧式看涨期权、看跌期权定价的函数:
import numpy as np
from scipy.stats import norm
def call_BS(S,K,sigma,r,T):
'''用bs模型计算欧式看涨期权价格
S 期权基础资产价格
K 期权执行价格
sigma 基础资产价格百分比变化(收益率)的年化波动率
r 无风险收益率
T 期权合约剩余年限
'''
d1 = (np.log(S/K) + (r + pow(sigma,2)/2)*T) / (sigma*np.sqrt(T))
d2 = d1 - sigma*np.sqrt(T)
return S*norm.cdf(d1) - K*np.exp(-r*T)*norm.cdf(d2)
def put_BS(S,K,sigma,r,T):
'''用bs模型计算欧式看跌期权价格
S 期权基础资产价格
K 期权执行价格
sigma 基础资产价格百分比变化(收益率)的年化波动率
r 无风险收益率
T 期权合约剩余年限
'''
d1 = (np.log(S/K) + (r + pow(sigma,2)/2)*T) / (sigma*np.sqrt(T))
d2 = d1 - sigma*np.sqrt(T)
return K*np.exp(-r*T)*norm.cdf(-d2) - S*norm.cdf(-d1)
例子:
一份期限为6个月的股票期权,期权的基础资产是工商银行的A股股票,2018年12月28日股票收盘价是5.29元/股,期权的执行价格为6元股,无风险利率为年化4%,股票收益率的年化波动率是24%,运用布莱克斯科尔斯-默顿模型计算看涨期权看跌期权的价格。
call_BS(S=5.29, K=6, sigma=0.24, r=0.04, T=0.5)
put_BS(S=5.29, K=6, sigma=0.24, r=0.04, T=0.5)
二、看涨-看跌期权 平价关系式
具有相同执行价格与期限的欧式看跌期权、看涨期权在价格上有一个重要关系式。
1.两个投资组合
首先,考虑以下两个投资组合在期权合约到期时的盈亏情况。A投资组合:一份欧式看涨期权和一份在T时刻到期的本金为K的零息债券;B投资组合:一份欧式看跌期权和一份基础资产。这里需要假设看涨期权与看跌期权具有相同的执行价格K与相同的合约期限T。
对于A投资组合而言,零息债券在期权合约到期日(T时刻)的价值显然是等于K,而对于看涨期权则分两种情形讨论。
情形1:如果在T时刻,基础资产价格St>K,A投资组合中的欧式看涨期权将被执行,此时,A投资组合的价值是(St-K)+K=St;
情形2:如果在T时刻,基础资产价格St<K,A投资组合中的欧式看涨期权就没有价值,此时A投资组合的价值为K。
对于B投资组合而言,也分两种情形讨论。
情形1:如果在T时刻,基础资产价格St>K,此时,B投资组合中的欧式看跌期权没有价值,此时,B投资组合价值为St,也就是仅剩下基础资产的价值;
情形2:如果在T时刻,基础资产价格St<K,此时,B投资组合中的欧式看跌期权会被行使,此时B投资组合价值为(K-St)+St=K。综合以上的分析,当St>K时,在T时刻两个投资组合的价值均为St;当St<K时在T时刻两个投资组合的价值均为K。换而言之,在T时刻(期权合约到期时),两个投资组合的价值均为max(St, K)
由于A投资组合与B投资组合中的期权均为欧式期权,在期权到期之前均不能行使,既然两个投资组合在T时刻均有相同的收益,在期权合约的存续期内也应该有相同的价值。否则,就会出现无风险套利机会,套利者可以买入价格低的投资组合,与此同时卖空价格高的投资组合进行无风险的套利,无风险套利收益就是等于两个组合价值的差额。
2. 抽象的数学表达式
看涨期权 + 零息债券价格 = 看跌期权 + 基础资产价格
平价共识
代码实现:
def call_parity(p,S,K,r,T):
'''通过平价关系式用看跌期权价格计算欧式看涨期权价格。
p:欧式看跌期权价格
S:期权基础资产价格
K:执行价格
r:无风险收益率
T:合约剩余期限
'''
return p + S - K * np.exp(-r * T)
def put_parity(c,S,K,r,T):
'''通过平价关系式,用看涨期权价格计算欧式看跌期权价格。
c:欧式看涨期权价格
S:期权基础资产价格
K:执行价格
r:无风险收益率
T:合约剩余期限
'''
return c + K * np.exp(-r * T) - S
例子:
假设当前股票价格为20元股,期权的执行价格为18元/股,无风险收益率为每年5%,3个月的欧式看涨期权价格对外报价是2.3元,3个月的欧式看跌期权对外报价是0.3元,期权价格是否合理?
call_parity(p=0.3, S=20, K=18, r=0.05, T=0.25)
==>2.523599591110134
put_parity(c=2.3, S=20, K=18, r=0.05, T=0.25)
==>0.07640040888986732
通过计算,看涨期权被低估,看跌期权则被高估,因此可以通过持有看涨期权的多头头寸并买入零息债券(相当于买入A投资组合),同时持有看跌期权的空头头寸并卖空基础资产(相当于卖空B投资组合),从而实现无风险套利。
打开CSDN APP,看更多技术内容
产品定价模型
产品定价模型划分 销售品 作为资费和服务的承载实体,是面向市场和客户提供的商务实体,包括销售品基本信息、生命周期、销售品属性、扣费规则、销售品品牌等等 定价计划 资费规则的打包,用户订购一个销售品时,只能实例出一个定价计划 定价 定义销售品具体的定价信息,包括计费基础费率、累积优惠和赠送、免费资源、折上折、帐务固费和优惠等等 产品定价模型概念视图 销售品信息根据实际业务需求通过配置实现。 定价计划-计费基础费率 普通费率 既直线费率 阶梯费率 分段费率 混合费率 基于上述两种费率,结合时间
继续访问
第1节 欧式期权价格
第1节 欧式期权价格 1.1 简介 1.2 Python 代码实现计算 1.3 细节说明 1.3.1 参数说明 1.3.2 价格和价值 1.3.3 正态分布累计概率函数N(x)N(x)N(x) 1.3.4 欧式期权的看跌-看涨平价关系 1.3.5 计算中使用无风险利率rrr而不是资产预期收益率μ\muμ 1.1 简介 考虑期权对应的资产价格为S(t)S(t)S(t), 记为SSS,它的变化过程为几何布朗运动, dSS=μdt+σdz
继续访问
【金融量化分析】#BSM formula 的推导(解随机微分方程)
【金融量化分析】#BSM formula 的推导(解随机微分方程)
继续访问
热门推荐 BSM的两个基本问题与python实现(欧式期权定价公式)
在我们的定义中,定量分析是数学或统计学方法在市场数据上的应用。 ——John Forman BSM定价模型的两个基本问题: 隐含波动率 以某些到期日的期权报价倒推出这些期权的隐含波动率,并汇出图表——这是期权交易者和风险管理者每天都要面对的任务。 蒙特卡洛模拟 欧式期权价值的计算。通过蒙特卡罗技术,模拟股票在一段时间中变化。 像Black-Scholes-Merton(1973)这样有深远影响...
继续访问
金融分析与风险管理——期权BSM模型
金融分析与风险管理——期权BSM模型1. BSM模型的假定2. 期权价格与相关变量的关系2.1 期权价格与标的物(S)价格的关系2.2 期权价格与执行价格(K)的关系2.3 期权价格与波动率(sigma)的关系2.4 期权价格与无风险收益率(r)的关系2.5 期权价格与期权剩余期限(t)的关系 1. BSM模型的假定 1.标的物价格服从几何布朗运动 2.允许做空,且可以完全运用做空所获得的资金 3.无交易费用、无税收费用,且可以无限分割 4.在期权期限内,标的物无期间收入 5.市场不存在无风险套利机会 6
继续访问
布莱克—斯科尔斯—默顿(BSM)模型
BSM模型是最常用的期权定价模型之一,虽然其假设不合符市场事实,但是该模型的提出奠定了现代金融衍生品法则的基石。 该模型在学界的发展: 早期的期权定价大多采用Black-Scholes(B-S)期权定价模型,B-S模型假定标的资产收益率服从正态分布且波动率是常数,但是这一假定无法解释“波动率微笑”和“杠杆效应”。在随后的研究中,不断有学者对B-S模型进行改进,例如修正常数波动率、重新刻画资产波动率分布等。 随机波动率模型对B-S模型做出了优化,较为着名的模型有Heston、3/2、...
继续访问
期权的定义与BSM定价
期权定价模型期权定义期权,是指一种合约,源于十八世纪后期的美国和欧洲市场,该合约赋予持有人在某一特定日期或该日之前的任何时间以固定价格购进或售出一种资产的权利。期权定义的要点如下:1、期权是一种权利,期权合约至少涉及买家和出售人两方。持有人享有权利但不承担相应的义务。2、期权的标的物。期权的标的物是指选择购买或出售的资产。它包括股票、政府债券、货币、股票指数、商品期货等。期权是这些标的物“衍生”的...
继续访问
BSM期权定价
1. BSM期权定价公式 2. 代码实现 import pandas as pd import numpy as np from math import sqrt,log from scipy import stats def BSM(S0,K,T,r,sigma): ''' S0: 股票价格; K: 执行价格; T: 期权期限; r: 无风险利率 sigma: 波动率 ''' S0 = float(S0) d1 = (np.
继续访问
最新发布 GBDT实战 —— 产品定价模型
GBDT实战 —— 产品定价模型
继续访问
欧式香草期权(普通看涨、看跌)的定价公式及实现
本文将从文献中查阅欧式看涨、看跌期权的定价公式,用代码实现该公式。
继续访问
Black-Scholes-Merton欧式期权定价公式
理论和实际价格通常不吻合
继续访问
数据有价——数据资产定价研究初探
数据(Data)是一项资产的观念形成虽然时间不长,但已经成为人们的共识。成为资产的两个基本前提条件是能够确权和定价。确权是确定谁拥有什么权利或权益,定价使得资产具备可转让...
继续访问
BSM模型心得,python实现方案
#BSM模型心得,python实现方案 BSM简介 首先对于BSM模型先简单介绍一下,接触过期权的人应该都不陌生,BSM模型全称Black-Scholes-Merton model,其主要的贡献是提供了一种期权定价模式,并且首次提出了对冲风险的概念,也就是delta hedging,通过delta hedging我们可以完全对冲掉风险,这也为当时的投资界提供了一个崭新的思路。 对于期权的定价我把方...
继续访问
期权定价公式的推导(欧式)
1.C=e−rTEQ[max(ST−K,0)]C = e^{-rT}E^{Q}[max(S_T-K,0)]C=e−rTEQ[max(ST−K,0)] 又可以写为C=e−rTEQ[(ST−K)]IIST>=K](1)C = e^{-rT}E^{Q}[(S_T-K)]II_{S_T > =K }] \tag 1 C=e−rTEQ[(ST−K)]IIST>=K](1) 其中QQ...
继续访问
期权定价模型之经典--BS模型
期权定价模型之BS模型
继续访问
matlab找出定价规律,基于MATLAB建立数学模型对定价系统的研究
1. 引言首先,应用MATLAB软件对所搜集数据进行删减,得到有效数据。利用有效数据建立起任务所在的经纬度坐标、任务标价以及任务完成情况的三维散点图,说明了价格、任务量和任务地点之间的内在关系。为了方便后续分析,运用MATLAB的K值聚类将这些散点分入A、B、C、D四个区域,建立了相应的二维散点图和各个区域的柱状图,得到价格、成功率和任务量分配之间的关系。另外,建立二维图直观分析了会员分布与成功率...
继续访问
分支定价算法(branch and price, B&P)
目录前言分支定界算法列生成算法步骤参考文献 前言 简述分支定价算法原理,如有错误可私信,谢谢。部分截图来自本人汇报所用PPT以及参考文献。 分支定界算法 分支定价算法(branch and price, B&P)=分支定界(branch and bound, B&B)+列生成(column generation, CG, 线性规划)。其中列生成算法用于求节点的下界,即节点松弛模型的最优解。列生成算法因其求解方法的本质会大大减少计算量,求解的并非节点松弛模型本身,而是受限制的松弛模型,即减少了
继续访问
matlab欧式期权定价公式,[转载]期权定价的Matlab实现(以欧式看涨期权为例)
二叉树模型考虑到欧式期权的特性,忽略中间过程,直接关注末期状态及其概率分布。function price=bino(s,k,r,t,v,n)dt=t/n;u=exp(v*sqrt(dt));d=1/u;p=(exp(r*dt)-d)/(u-d);for i=0:nst(i+1)=s*power(u,n-i)*power(d,i);prob(i+1)=nchoosek(n,i)*power(p,n-...
继续访问
定价模型,该如何做分析?
“为啥书上讲的和实际做的不一样???”在数据领域,有很多“书上一讲就明白,实际一干就报废”的知识点,因此同学们才有这种疑惑。趁着开年,系统帮同学们解答一下,后续工作、面试都用得上。而在众多...
继续访问
比特币
区块链
数学建模
❼ 研究衍生品的时候为什么用几何布朗运动来模拟股票价格的运行轨迹
其实很简单,GBM(至少在一定程度上)符合人们对市场的观察。例如,直观的说,股票的价格看起来很像随机游走,再例如,股票价格不会为负,这样起码GBM比普通的布朗运动合适,因为后者是可以为负的。
再稍微复杂一点,对收益率做测试( S(t)/S(t-1) - 1)做测试,发现,哎居然还基本是个正态分布。收益率是正态的,股价就是GBM模型
总之,就是大家做了很多统计测试,发现假设成GBM还能很好的逼近真实数值,比较接近事实。所以就用这个。
其实将精确的数学模型应用到金融的时间非常短。最早是1952年的Markowitz portfolio selection. 那个其实就是一个简单的优化问题。后来的CAPM APT等诸多模型,也仅仅研究的是一系列证券,他们之间回报、收益率以及其他影响因素关系,没有涉及到对股价运动的描述。
第一次提出将股价是GBM应用在严格模型的是black-scholes model 。在这个模型中提出了若干个假设,其中一个就是股价是GBM的。