① 假设股票价格服从几何布朗运动, 那么里面的sigma定义是什么
定义是不是(S(t+dt)-S(t))/(S(t)*dt) 的standard deviation? 如果是这个,它的量纲就应该是t^-1, 不过从几何布朗运动的模型中看的话又应该是t^-0.5, 因为dW是t^0.5的量纲才对.谢谢了!
② 风险中性的求证试验
期权定价模型
期权定价模型是期权理论分析的一个重要内容,它是金融工程研究的基础。1973年金融学家费雪·布莱克(FischerBlack)和迈伦·斯科尔斯(Myronscholes)在美国《政治经济学》上发表了论文《期权和公司债务的定价》,给出了欧式股票看涨期权的定价公式,即今天所称的Black2Scholes模型,该模型被称为“不仅在金融领域,而且在整个经济领域中最成功的理论”,斯科尔斯因此和美国哈佛商学院的教授罗伯特·默顿(BobertC.Merton)获得了第29届诺贝尔经济学奖。但Black2Scholes期权定价公式的推导过程是相当复杂的,需要用到随机过程、随机微分方程求解等高深的数学工具知识。Black2Scholes公式的两个新颖和简洁的推导,即在风险中性假设下来推导出Black2Scholes
基本假设和记号
借助于Black2Scholes模型的原始假设条件:
(1)期权是股票的欧式看涨期权,其执行价格是K,记当前时刻为t,期权到期时间为T,股票当前价格是S,时刻的价格是ST。
(2)股票价格遵循几何布朗运动,即logST-logS~Φ[(μ-σ22(T-t),σT-t]其中Φ(m,n)表示均值为m,标准差为n的正态分布。
(3)允许使用全部所得卖空衍生证券。
(4)无交易费用或税收。
(5)在衍生证券的有效期内没有红利支付。
(6)不存在无风险套利机会。
(7)证券交易是连续的。
(8)无风险利率是常数且对所有到期日都相同。
再假设投资者都是风险中性的,在风险中性世界里,股票的预期收益率μ等于无风险利率r,则由假设(2),得到
logST-logS~Φr-σ2(T-t),σT-t
由对数正态分布的特性,可知ST的期望值E(ST)表示为E(ST)=Ser(T-t)。对于不支付红利股票的欧式看涨期权,它在到期日的价值为CT=max{ST-K,0},期权当前价格C应是E(CT)以无风险利率贴现的结果,即C=e-r(T-t)E(CT)=e-r(T-t)E(max(ST-K,0))
③ 关于MATLAB建模的一个小问题
楼主如果追加分的话我可以帮你做~ 10分做这个太不合算了。。
④ 求教:如果标的股票价格不服从几何布朗运动,那么该权证怎么定价
你新手吧 看你研究的东西就是新手……
⑤ 求经济B-S期权定价模型的原理还有计算方法
假定股票价格服从几何布朗运动,即dSt/St=μdt+σdWt. St为t时点股票价格,μ为漂移量,σ为波动率,Wt为标准布朗运动。使用伊藤公式。然后用无套利原理求得BSPDE。
⑥ 为什么用几何布朗运动描述股票价格
几何布朗运动就是物理中典型的随机运动,其特点就是不可预测,而在股市中的短期股票价格也是不可预测。
⑦ 研究衍生品的时候为什么用几何布朗运动来模拟股票价格的运行轨迹
为什么要用GBM描述股价运动其实很简单,GBM(至少在一定程度上)符合人们对市场的观察。例如,直观的说,股票的价格看起来很像随机游走,再例如,股票价格不会为负,这样起码GBM比普通的布朗运动合适,因为后者是可以为负的。再稍微复杂一点,对收益率做测试( S(t)/S(t-1) - 1)做测试,发现,哎居然还基本是个正态分布。收益率是正态的,股价就是GBM模型总之,就是大家做了很多统计测试,发现假设成GBM还能很好的逼近真实数值,比较接近事实。所以就用这个。
⑧ 假定股票价格s服从集合布朗运动 ds=μsdt σdz 变量sn服从什么过程
一般双次拉回都上不去,一定有再次下跌,这种双次拉回的第二次,都是构成下跌中的第一个中枢的最小级别的第三类卖点。看技术买点,一定要综合地看,如果30分很强的,甚至是1分钟的买点也该回补了;但如果30分很弱,那至少要等30分的买点出现。+ƍƍ 8819-7996应该对你了解股票知识有帮助。
⑨ 计算var时假设股票价格符合什么运动
定义是不是(s(t+dt)-s(t))/(s(t)*dt)
的standard
deviation?
如果是这个,它的量纲就应该是t^-1,
不过从几何布朗运动的模型中看的话又应该是t^-0.5,
因为dw是t^0.5的量纲才对.谢谢了!
⑩ 证券价格服从漂移参数0.05,波动参数0.3的几何布朗运动,当前价格为95,利率是4% 假设有种
根据题目,若假设有种新型投资,若购买该投资后六个月内证券价格至少为105,并且购买一年后的价格至少和六个月时价格一样多,那么这种投资一年后的收益为50。
几何布朗运动 (GBM)(也叫做指数布朗运动)是连续时间情况下的随机过程,其中随机变量的对数遵循布朗运动。[1]几何布朗运动在金融数学中有所应用,用来在布莱克-斯科尔斯模型(Black-Scholes 模型)中模拟股票价格。本题中,若若假设有种新型投资,若购买该投资后六个月内证券价格至少为105,并且购买一年后的价格至少和六个月时价格一样多,那么计算为:50乘exp(-0.04)再乘【S(1/2)>105的概率】再乘【S(1)>S(1/2)的概率,则这种投资一年后的收益为50。
拓展资料:
1.常见随机过程介绍
1)几何布朗运动(GBM):这个过程被Black-Scholes(1973)引入到期权定价文献中,虽然这个过程有一些缺陷,并且与实证研究存在着冲突,但是仍然是一种期权和衍生品估值过程的基础过程。
2)CIR模型:平方根扩散过程,这种过程由Cox,Ingersoll和Ross(1985)所提出,用于对均值回复的数量,例如利率或波动率进行建模,除了均值回复的特性以外,这个过程还是保持为正数。
3)跳跃扩散过程(Jump Diffusion):首先由Merton(1976)所给出,为几何布朗运动增加了对数正态分布的条约成分,这允许我们考虑,例如,短期虚值(OTM)的期权通常需要在较大条约的可能性下定价。换句话说,依赖GBM作为金融模型通常不能解释这种OTM的期权的价格,而跳跃扩散过程可能很好的解释。
4)Heston模型:是由Steven Heston(1993)提出的描述标的资产波动率变化的数学模型。Heston模型是一个随机波动模型,这种模型假设资产收益率的波动率并不恒定,也不确定,而是跟随一个随机过程来运动。
5)SABR模型:SABR 模型是由Hagan(2002)提出的一种随机波动率模型,在抛弃了原始的BSM模型中对于波动率为某一常数的假定,假设隐含波动率同样是符合几何布朗运动的,并且将隐含波动率设定为标的价格和合约行权价的函数,结合了隐含波动率修正模型的两种思路(随机波动率模型和局部波动率模型),更为准确的动态刻画出吻合市场特征的隐含波动率曲线。