当前位置:首页 » 股票盈亏 » 股票价格的对数服从正态分布
扩展阅读
设计总院股票历史股价 2023-08-31 22:08:17
股票开通otc有风险吗 2023-08-31 22:03:12
短线买股票一天最好时间 2023-08-31 22:02:59

股票价格的对数服从正态分布

发布时间: 2022-06-28 21:24:00

A. 关于Black-Scholes模型

Black-Scholes期权定价模型

Black-Scholes期权定价模型(Black-Scholes Option Pricing Model),布莱克-肖尔斯期权定价模型

1997年10月10日,第二十九届诺贝尔经济学奖授予了两位美国学者,哈佛商学院教授罗伯特·默顿(RoBert Merton)和斯坦福大学教授迈伦·斯克尔斯(Myron Scholes)。他们创立和发展的布莱克——斯克尔斯期权定价模型(Black Scholes Option Pricing Model)为包括股票、债券、货币、商品在内的新兴衍生金融市场的各种以市价价格变动定价的衍生金融工具的合理定价奠定了基础。

斯克尔斯与他的同事、已故数学家费雪·布莱克(Fischer Black)在70年代初合作研究出了一个期权定价的复杂公式。与此同时,默顿也发现了同样的公式及许多其它有关期权的有用结论。结果,两篇论文几乎同时在不同刊物上发表。所以,布莱克—斯克尔斯定价模型亦可称为布莱克—斯克尔斯—默顿定价模型。默顿扩展了原模型的内涵,使之同样运用于许多其它形式的金融交易。瑞士皇家科学协会(The Royal Swedish Academyof Sciencese)赞誉他们在期权定价方面的研究成果是今后25年经济科学中的最杰出贡献。

[编辑]B-S期权定价模型(以下简称B-S模型)及其假设条件
[编辑](一)B-S模型有7个重要的假设
1、股票价格行为服从对数正态分布模式;

2、在期权有效期内,无风险利率和金融资产收益变量是恒定的;

3、市场无摩擦,即不存在税收和交易成本,所有证券完全可分割;

4、金融资产在期权有效期内无红利及其它所得(该假设后被放弃);

5、该期权是欧式期权,即在期权到期前不可实施。

6、不存在无风险套利机会;

7、证券交易是持续的;

8、投资者能够以无风险利率借贷。

[编辑](二)荣获诺贝尔经济学奖的B-S定价公式
C = S * N(d1) − Le − rTN(d2)

其中:

C—期权初始合理价格

L—期权交割价格

S—所交易金融资产现价

T—期权有效期

r—连续复利计无风险利率H

σ2—年度化方差

N()—正态分布变量的累积概率分布函数 ,在此应当说明两点:

第一,该模型中无风险利率必须是连续复利形式。一个简单的或不连续的无风险利率(设为r0)一般是一年复利一次,而r要求利率连续复利。r0必须转化为r方能代入上式计算。两者换算关系为:r = ln(1 + r0)或r0=Er-1。例如r0=0.06,则r=ln(1+0.06)=0853,即100以583%的连续复利投资第二年将获106,该结果与直接用r0=0.06计算的答案一致。

第二,期权有效期T的相对数表示,即期权有效天数与一年365天的比值。如果期权有效期为100天,则。

[编辑]B-S定价模型的推导与运用
(一)B-S模型的推导B-S模型的推导是由看涨期权入手的,对于一项看涨期权,其到期的期值是:

E[G] = E[max(St − L,O)]

其中,E[G]—看涨期权到期期望值

St—到期所交易金融资产的市场价值

L—期权交割(实施)价

到期有两种可能情况:

1、如果St > L,则期权实施以进帐(In-the-money)生效,且max(St − L,O) = St − L

2、如果St < L,则期权所有人放弃购买权力,期权以出帐(Out-of-the-money)失效,且有:

max(St − L,O) = 0

从而:

其中:P:(St > L)的概率E[St | St > L]:既定(St > L)下St的期望值将E[G]按有效期无风险连续复利rT贴现,得期权初始合理价格:

C = Pe − rT(E[St | St > L] − L)这样期权定价转化为确定P和E[St | St > L]。

首先,对收益进行定义。与利率一致,收益为金融资产期权交割日市场价格(St)与现价(S)比值的对数值,即收益 = lnSt / S = ln(St / L)。由假设1收益服从对数正态分布,即ln(St / L)~,所以E[lN(St / S] = μt,St / S~可以证明,相对价格期望值大于eμt,为:E[St / S] = eμt + σ2T2 = eeT从而,μt = T(r − σ2),且有σt = σT

其次,求(St > L)的概率P,也即求收益大于(LS)的概率。已知正态分布有性质:Pr06[ξ > x] = 1 − N(x − μσ)其中:

ζ:正态分布随机变量

x:关键值

μ:ζ的期望值

σ:ζ的标准差

所以:P = Pr06[St > 1] = Pr06[lnSt / s] > lnLS = :LN − lnLS − (r − σ2)TσTnc4 由对称性:1 − N(d) = N( − d)P = NlnSL + (r − σ2)TσTarS。

第三,求既定St > L下St的期望值。因为E[St | St > L]处于正态分布的L到∞范围,所以,

E[St | St] > = SerTN(d1)N(d2)

其中:

最后,将P、E[St | St] > L]代入(C = Pe − rT(E[St | St > L] − L))式整理得B-S定价模型:C = SN(d1) − Le − rTN(d2)

(二)看跌期权定价公式的推导

B-S模型是看涨期权的定价公式,根据售出—购进平价理论(Put-callparity)可以推导出有效期权的定价模型,由售出—购进平价理论,购买某股票和该股票看跌期权的组合与购买该股票同等条件下的看涨期权和以期权交割价为面值的无风险折扣发行债券具有同等价值,以公式表示为:

S + Pe(S,T,L) = Ce(S,T,L) + L(1 + r) − T

移项得:

Pe(S,T,L) = Ce(S,T,L) + L(1 + r) − T − S,

将B-S模型代入整理得:

此即为看跌期权初始价格定价模型。

(三)B-S模型应用实例

假设市场上某股票现价S为 164,无风险连续复利利率γ是0.0521,市场方差σ2为0.0841,那么实施价格L是165,有效期T为0.0959的期权初始合理价格计算步骤如下:

①求d1:

=0.0328

②求d2:

③查标准正态分布函数表,得:N(0.03)=0.5120 N(-0.06)=0.4761

④求C:

C=164×0.5120-165×e-0.0521×0.0959×0.4761=5.803

因此理论上该期权的合理价格是5.803。如果该期权市场实际价格是5.75,那么这意味着该期权有所低估。在没有交易成本的条件下,购买该看涨期权有利可图。

[编辑]B-S模型的发展、股票分红
B-S模型只解决了不分红股票的期权定价问题,默顿发展了B-S模型,使其亦运用于支付红利的股票期权

(一)存在已知的不连续红利假设某股票在期权有效期内某时间t(即除息日)支付已知红利Dt,只需将该红利现值从股票现价S中除去,将调整后的股票价值S′代入B-S模型中即可:S' = S − Dte − rT。如果在有效期内存在其它所得,依该法一一减去。从而将B-S模型变型得新公式:

(二)存在连续红利支付是指某股票以一已知分红率(设为δ)支付不间断连续红利,假如某公司股票年分红率δ为0.04,该股票现值为164,从而该年可望得红利164×004= 6.56。值得注意的是,该红利并非分4季支付每季164;事实上,它是随美元的极小单位连续不断的再投资而自然增长的,一年累积成为6.56。因为股价在全年是不断波动的,实际红利也是变化的,但分红率是固定的。因此,该模型并不要求红利已知或固定,它只要求红利按股票价格的支付比例固定。

在此红利现值为:S(1-E-δT),所以S′=S•E-δT,以S′代S,得存在连续红利支付的期权定价公式:C=S•E-δT•N(D1)-L•E-γT•N(D2)

[编辑]B-S模型的影响
自B-S模型1973年首次在政治经济杂志(Journalofpo Litical Economy)发表之后,芝加哥期权交易所的交易商们马上意识到它的重要性,很快将B-S模型程序化输入计算机应用于刚刚营业的芝加哥期权交易所。该公式的应用随着计算机、通讯技术的进步而扩展。到今天,该模型以及它的一些变形已被期权交易商、投资银行、金融管理者、保险人等广泛使用。衍生工具的扩展使国际金融市场更富有效率,但也促使全球市场更加易变。新的技术和新的金融工具的创造加强了市场与市场参与者的相互依赖,不仅限于一国之内还涉及他国甚至多国。结果是一个市场或一个国家的波动或金融危机极有可能迅速的传导到其它国家乃至整个世界经济之中。我国金融体制不健全、资本市场不完善,但是随着改革的深入和向国际化靠拢,资本市场将不断发展,汇兑制度日渐完善,企业也将拥有更多的自主权从而面临更大的风险。因此,对规避风险的金融衍生市场的培育是必需的,对衍生市场进行探索也是必要的,我们才刚刚起步。

[编辑]对B-S模型的检验、批评与发展
B-S模型问世以来,受到普遍的关注与好评,有的学者还对其准确性开展了深入的检验。但同时,不少经济学家对模型中存在的问题亦发表了不同的看法,并从完善与发展B-S模型的角度出发,对之进行了扩展。

1977年美国学者伽莱(galai)利用芝加哥期权交易所上市的股票权的数据,首次对布-肖模型进行了检验。此后,不少学者在这一领域内作了有益的探索。其中比较有影响的代表人物有特里皮(trippi)、奇拉斯(chiras)、曼纳斯特(manuster)、麦克贝斯(macbeth)及默维勒(merville)等。综合起来,这些检验得到了如下一些具有普遍性的看法:

1.模型对平值期权的估价令人满意,特别是对剩余有效期限超过两月,且不支付红利者效果尤佳。

2.对于高度增值或减值的期权,模型的估价有较大偏差,会高估减值期权而低估增值期权。

3.对临近到期日的期权的估价存在较大误差。

4.离散度过高或过低的情况下,会低估低离散度的买入期权,高估高离散度的买方期权。但总体而言,布-肖模型仍是相当准确的,是具有较强实用价值的定价模型。

对布-肖模型的检验着眼于从实际统计数据进行分析,对其表现进行评估。而另外的一些研究则从理论分析入手,提出了布-肖模型存在的问题,这集中体现于对模型假设前提合理性的讨论上。不少学者认为,该模型的假设前提过严,影响了其可靠性,具体表现在以下几方面:

首先,对股价分布的假设。布-肖模型的一个核心假设就是股票价格波动满足几何维纳过程,从而股价的分布是对数正态分布,这意味着股价是连续的。麦顿(merton)、考克斯(cox)、罗宾斯坦(robinstein)以及罗斯(ross)等人指出,股价的变动不仅包括对数正态分布的情况,也包括由于重大事件而引起的跳起情形,忽略后一种情况是不全面的。他们用二项分布取代对数正态分布,构建了相应的期权定价模型。

其次,关于连续交易的假设。从理论上讲,投资者可以连续地调整期权与股票间的头寸状况,得到一个无风险的资产组合。但实践中这种调整必然受多方面因素的制约:1.投资者往往难以按同一的无风险利率借入或贷出资金;2.股票的可分性受具体情况制约;3.频繁的调整必然会增加交易成本。因此,现实中常出现非连续交易的情况,此时,投资者的风险偏好必然影响到期权的价格,而布-肖模型并未考虑到这一点。

再次,假定股票价格的离散度不变也与实际情况不符。布莱克本人后来的研究表明,随着股票价格的上升,其方差一般会下降,而并非独立于股价水平。有的学者(包括布莱克本人)曾想扩展布-肖模型以解决变动的离散度的问题,但至今未取得满意的进展。

此外,不考虑交易成本及保证金等的存在,也与现实不符。而假设期权的基础股票不派发股息更限制了模型的广泛运用。不少学者认为,股息派发的时间与数额均会对期权价格产生实质性的影响,不能不加以考察。他们中有的人对模型进行适当调整,使之能反映股息的影响。具体来说,如果是欧洲买方期权,调整的方法是将股票价格减去股息(d)的现值替代原先的股价,而其他输入变量不变,代入布-肖模型即可。若是美国买方期权,情况稍微复杂。第一步先按上面的办法调整后得到不提早执行情况下的价格。第二步需估计在除息日前立即执行情况下期权的价格,将调整后的股价替代实际股价,距除息日的时间替代有效期限、股息调整后的执行价格(x-d)替代实际执行价格,连同无风险利率与股价离散度等变量代入模型即可。第三步选取上述两种情况下期权的较大值作为期权的均衡价格。需指出的是,当支付股息的情况比较复杂时,这种调整难度很大。

B. 什么是对数收益率

对数收益率是两个时期资产价值取对数后的差额,即资产多个时期的对数收益率等于其各时期对数收益率之和。

衡量股票投资收益的水平指标主要有股利收益率与持有期收益率和拆股后持有期收益率等。

1、股利收益率

股利收益率,又称获利率,是指股份公司以现金形式派发的股息或红利与股票市场价格的比率其计算公式为:

该收益率可用计算已得的股利收益率,也能用于预测未来可能的股利收益率。

2、持有期收益率

持有期收益率指投资者持有股票期间的股息收入和买卖差价之和与股票买入价的比率。其计算公式为:

股票还没有到期日的,投资者持有股票时间短则几天、长则为数年,持有期收益率就是反映投资者在一定持有期中的全部股利收入以及资本利得占投资本金的比重。

持有期收益率是投资者最关心的指标之一,但如果要将其与债券收益率、银行利率等其他金融资产的收益率作一比较,须注意时间可比性,即要将持有期收益率转化成年率。

3、持有期回收率

持有期回收率说的是投资者持有股票期间的现金股利收入和股票卖出价之和与股票买入价比率。本指标主要反映其投资回收情况,如果投资者买入股票后股价下跌或操作不当。

均有可能出现股票卖出价低于其买入价,甚至出现了持有期收益率为负值的情况,此时,持有期回收率能作为持有期收益率的补充指标,计算投资本金的回收比率。其计算公式为:

4、拆股后的持有期收益率

投资者在买入股票后,在该股份公司发放股票股利或进行股票分割(即拆股)的情况下,股票的市场的市场价格及其投资者持股数量都会发生变化。

因此,有必要在拆股后对股票价格及其股票数量作相应调整,以计算拆股后的持有期收益率。其计算公式为:(收盘价格-开盘价格)/开盘价格股票收益率的计算公式 股票收益率= 收益额 /原始投资额其中:收益额=收回投资额+全部股利-(原始投资额+全部佣金+税款)

当股票未出卖时,收益额即为股利。

(2)股票价格的对数服从正态分布扩展阅读:

在投资决策时的股票收益率计算公式:

假设股票价格是公平的市场价格,证劵市场处于均衡状态,在任一时点证劵的价格都能完全反映有关该公司的任何可获得的公开信息,而且证劵价格对新信息能迅速做出反应。在这种假设条件下,股票的期望收益率等于其必要的收益率。

而股票的总收益率可以分为两个部分:第一部分:D1/P0 这是股利收益率。解释为预期(下一期)现金股利除以当前股价,那下一期股利如何算呢,D1=D0*(1+g)。第二部分是固定增长率g,解释为股利增长率,由于g与股价增长速度相同,故此g可以解释为股价增长率或资本利得收益率。

举个例子来说明:股价20元,预计下一期股利1元,该股价将以10%速度持续增长

则:股票收益率=1/20+10%=15%

这个例子中的难点是10%,她就是g,g的数值可根据公司的可持续增长率估计,可持续增长率大家应该都知道了吧。g算出后,下一期股利1元也是由她算出的,公式上面已经列出。有了股票收益率15%,股东可作出决定期望公司赚取15%,则可购买。

C. 为什么假设股票价格服从正态分布是不现实的

有一个最基本的想法,如果股票符合正态分布,那么,会怎样?因为趋势已定,所有人都可以在股票价格变动前预测到股票将来的价格走势。投资将成为一件没有任何意义的事情。
另外,股票价格会受到企业的发展、经济的环境、政策的走势以及人们的心理波动影响。所以,其价格出现非规律变化、非正太分布的波动是非常正常的。

D. 如果用matlab验证股票的收盘价符合对数正态分布

先导入数据,然后取收盘价的对数值即y=ln(y)
clc;clear
y=ln(y)
Std=std(y) %标准差
[F,XI]=ksdensity(y)
figure(1)
plot(XI,F,'o-')
x =randn(300000,1);
figure(2)
[f,xi] = ksdensity(x);
plot(xi,f);
画出概率分布图
ksdensity -------------------- Kernel smoothing density estimation.
表示核平滑密度估计

E. 股市K线中的正态分部是什么

一种概率分布。正态分布是具有两个参数μ和σ2的连续型随机变量的分布,第一参数μ是服从正态分布的随机变量的均值,第二个参数σ2是此随机变量的方差,所以正态分布记作N(μ,σ2 )。 服从正态分布的随机变量的概率规律为取与μ邻近的值的概率大 ,而取离μ越远的值的概率越小;σ越小,分布越集中在μ附近,σ越大,分布越分散。正态分布的密度函数的特点是:关于μ对称,在μ处达到最大值,在正(负)无穷远处取值为0,在μ±σ处有拐点。它的形状是中间高两边低 ,图像是一条位于x轴上方的钟形曲线。当μ=0,σ2 =1时,称为标准正态分布,记为N(0,1)。μ维随机向量具有类似的概率规律时,称此随机向量遵从多维正态分布。多元正态分布有很好的性质,例如,多元正态分布的边缘分布仍为正态分布,它经任何线性变换得到的随机向量仍为多维正态分布,特别它的线性组合为一元正态分布。
正态分布最早由A.棣莫弗在求二项分布的渐近公式中得到。C.F.高斯在研究测量误差时从另一个角度导出了它。P.S.拉普拉斯和高斯研究了它的性质。
生产与科学实验中很多随机变量的概率分布都可以近似地用正态分布来描述。例如,在生产条件不变的情况下,产品的强力、抗压强度、口径、长度等指标;同一种生物体的身长、体重等指标;同一种种子的重量;测量同一物体的误差;弹着点沿某一方向的偏差;某个地区的年降水量;以及理想气体分子的速度分量,等等。一般来说,如果一个量是由许多微小的独立随机因素影响的结果,那么就可以认为这个量具有正态分布(见中心极限定理)。从理论上看,正态分布具有很多良好的性质 ,许多概率分布可以用它来近似;还有一些常用的概率分布是由它直接导出的,例如对数正态分布、t分布、F分布等。

F. 金融工程相对定价法的假设前提是什么

相对定价也就是无套利定价,要保证资产是可以自由流动的,并且假设没有交易费用
很多时候都用到BS模型(布莱克斯科尔斯模型)你可以参考bs模型的前提条件

1、股票价格行为服从对数正态分布模式;
2、在期权有效期内,无风险利率和金融资产收益变量是恒定的;
3、市场无摩擦,即不存在税收和交易成本,所有证券完全可分割;
4、金融资产在期权有效期内无红利及其它所得(该假设后被放弃);
5、该期权是欧式期权,即在期权到期前不可实施。
6、不存在无风险套利机会;
7、证券交易是持续的;
8、投资者能够以无风险利率借贷

G. 已知某股票的一年以后价格X服从对数正态分布,当前价格为十元,且期望为15,方差为4,。求其连续复合年收益

鉴于以上3个楼层的搞笑,我算了下看图

H. 为什么股票价格服从对数正态分布

我们可以假设连续复利,用lnS1-lnS0来近似股票的收益(S1-S0)/S0,而且根据集合布朗运动可知,此收益是服从正态分布的。

I. 个股k线值怎样计算听过一个金融人士的理论:XX值取对数呈正态分布,这个XX指的什么

今天的大盘正如笔者昨日的提到,将有一调整,而且幅度会较大。对于我们的客户26日的操作是明智之举。在股市征战中,我一直重申观点,就是规避风险第一,从而达到稳步不间断盈利的投资理念。在实践中也得到了广大股民的认可。从而委托我们管理的客户也一直处于稳健的财富增值状态,令笔者深感欣慰。

看到有些论坛的股民经常会说,要是买卖点都是最佳位置该多好?我要告诉你,有潜力的股票今天买进,明天涨停,不管今天什么点位进,胜利还是你的,所以不必计较一时几毛几分的利差,长久稳定的盈利最重要。没有一个人能做到任何时候买卖点都是最佳,巴菲特是投资界的金字塔顶的人物,试问:您老80多了,每次进股票都是最佳点位吗?显然不可能。所以心态的调整很重要,不必在意一时的涨跌,在明天涨停后迅速判断第二天的走势,这个是可以大致做到的,规避风险,该走坚决不留,不管有多少诱惑,稳住手中的利益,不贪婪,这样才能保证您持久获利。

肯定很多人会问,宏皓老师您是如何对今天的走势做出判断的?我如果回答:这是我20年投资生涯的经验,朋友们也许会说我敷衍。但事实就是如此,一流的投资大师对于大盘的走势的确是有过人的敏感性,今早中央二台《交易时间》的机构投资分析师几乎全部看涨,普通投资者也疯狂唱多,我只是微笑,开车上班,相信昨天的文章在今天收盘后一定会得到广大股民的认同。

一直强调这个金融投资行业是专家理财的行业,网络、电视媒体铺天盖地的所谓“高手看盘”忽悠了百姓的视野,让百姓不知道何去何从。顶级的投资大师必须有一套完整的投资体系,有造福全社会的投资规避风险的理论,有对各种问题犀利独到的敏锐,更有希望对全社会老百姓做贡献,使全社会老百姓养成正确投资习惯的信心。而这个市场是个鱼龙混杂的市场,各方的利益都有代表,真正维护老百姓让老百姓获利的渠道少之又少,好不容易老百姓觉得来到股市也许可以试试身手,但是一不小心又成了各大机构的牺牲品。基金公司,银行的理财产品的文章在笔者博文中多次提及。大家可以看看2009年基金公司基金经理前十名的,在今年还有他们的芳名吗?在各大网络电视媒体“高手”的言论抢夺了多少老百姓的血汗钱?事实证明,中国需要指引股民投资方向的顶级投资大师。

之前笔者在博文中提及过如何区分真实与否的私募理财公司, 8月10日的《私募和操盘手培训的骗子们骗不了读这篇文章的人》已经告诫过大家如何识别,来咨询我们的客户,我都会对他说,直到你遇见充分信任的这个人,相信他会在今后的几十年帮助你财富稳步增值就找他,如果有80%信任的话,那还是不要去委托,多观察,什么时候100%信任了,再去找他。相信是委托合作的基础,判断依据就是从着作,业绩,投资理念,公司背景(查询各地工商局网站)等。有些混杂在股市一两年就说自己是高手的人分享自己的炒股心得,这个是适合他自己的,那他的经验适合别人的投资习惯吗?真正的投资专家一定有一套完整的适合大众的投资体系,在近期全国发行的《股王兵法》系列讲座光盘中有完整解析。觉得适合自己去纠正错误的投资习惯的朋友可以观看。记住:所有人的经验都是可以分享的,但并不一定是最适合自己的,找到适合自己投资体系的才能指引你正确的投资方向,才能保证你今后的财富稳步增值。养成良好的投资习惯比一两次在股市中投机行为益处要大得多。一两次的投机或许你一时兴高采烈,但永久的持续获利更会让你幸福美满,不是吗?

笔者一直有着自己的信仰,坚决不做违背道义的事是信条。始终按照自己的投资理念在踏实做实事,帮助相信我肯定我的股民朋友们造福。受邀去多家高校讲课,自己的《股王兵法》投资体系也得到了权威的肯定。我并没有去大肆地炒作自己,整天曝光在大家面前的人有多少在实实在在地做事,无非是为了出名要趁早,趁热打铁加入抢钱集团,成为各方利益的代表谋私利,一旦被人揭穿,全世界唾骂。美国旁氏骗局的故事我不想重提,只想大家以此为戒。笔者在高校巡回讲《中国证券20年》的风雨历程时,所有学员都欢欣鼓舞,因为中国未来的股市一定是向好的,只要加强监管力度,彻底打击内幕交易,政策透明,不断完善《证券法》的各项内容,执政者秉持一贯的向上作风,去其槽粕,取其精华,中国未来的经济向好,中国未来的股市也会注定辉煌。

这个世界不可能所有人都能肯定你的想法,追随你的做法,否则也就没有“个人价值观”这一说辞了。伟大领袖毛主席缔造了多少革命的神话,但不谐之音也层出不穷。只要让相信你的人始终迈着和你一致的步伐,让将信将疑的人通过时间的推进来相信你,让彻底反对你的人尝到了背道而驰的痛心疾首,那跟随笔者的朋友们,未来中国的金融投资市场必定向着积极光明,你们的生活品质会更上一层楼,最关键的心灵上得到启迪,学会了处事不惊,淡定从容,能自由地在金融股海里畅游!

就此搁笔。

2010.10.27 16:20于北京