当前位置:首页 » 股票股评 » 股票的风险状况是协方差吗
扩展阅读
设计总院股票历史股价 2023-08-31 22:08:17
股票开通otc有风险吗 2023-08-31 22:03:12
短线买股票一天最好时间 2023-08-31 22:02:59

股票的风险状况是协方差吗

发布时间: 2023-04-06 21:57:18

Ⅰ 证券组合投资的收益与风险计算

β系数在证券投资中的应用
06级金融班 冷松

β系数常常用在投资组合的各种模型中,比如马柯维茨均值-方差模型、夏普单因素模型(Shape Single-Index Model)和多因素模型。具体来说,β系数是评估一种证券系统性风险的工具,用以量度一种证券或一个投资证券组合相对于总体市场的波动性,β系数利用一元线性回归的方法计算。
(一)基本理论及计算的意义
经典的投资组合理论是在马柯维茨的均值——方差理论和夏普的资本资产定价模型的基础之上发展起来的。在马柯维茨的均值——方差理论当中是用资产收益的概率加权平均值来度量预期收益,用方差来度量预期收益风险的:
E(r)=∑p(ri) ri (1)
σ2=∑P(ri)[ri—E(r)]2 (2)
上述公式中p(ri)表示收益ri的概率,E(r)表示预期收益,σ2表示收益的风险。夏普在此基础上通过一些假设和数学推导得出了资本资产定价模型(CAPM):
E(ri)=rf +βi [E(rM)—rf] (3)
公式中系数βi 表示资产i的所承担的市场风险,βi=cov(r i , r M)/var(r M) (4)
CAPM认为在市场预期收益rM 和无风险收益rf 一定的情况下,资产组合的收益与其所分担的市场风险βi成正比。
CAPM是基于以下假设基础之上的:
(1)资本市场是完全有效的(The Perfect Market);
(2)所有投资者的投资期限是单周期的;
(3)所有投资者都是根据均值——方差理论来选择有效率的投资组合;
(4)投资者对资产的报酬概率分布具有一致的期望。
以上四个假设都是对现实的一种抽象,首先来看假设(3),它意味着所有的资产的报酬都服从正态分布,因而也是对称分布的;投资者只对报酬的均值(Mean)和方差(Variance)感兴趣,因而对报酬的偏度(Skewness)不在乎。然而这样的假定是和实际不相符的!事实上,资产的报酬并不是严格的对称分布,而且风险厌恶型的投资者往往具有对正偏度的偏好。正是因为这些与现实不符的假设,资本资产定价模型自1964年提出以来,就一直处于争议之中,最为核心的问题是:β系数是否真实正确地反映了资产的风险?
如果投资组合的报酬不是对称分布,而且投资者具有对偏度的偏好,那么仅仅是用方差来度量风险是不够的,在这种情况下β系数就不能公允的反映资产的风险,从而用CAPM模型来对资产定价是不够理想的,有必要对其进行修正。
β系数是反映单个证券或证券组合相对于证券市场系统风险变动程度的一个重要指标。通过对β系数的计算,投资者可以得出单个证券或证券组合未来将面临的市场风险状况。
β系数反映了个股对市场(或大盘)变化的敏感性,也就是个股与大盘的相关性或通俗说的"股性",可根据市场走势预测选择不同的β系数的证券从而获得额外收益,特别适合作波段操作使用。当有很大把握预测到一个大牛市或大盘某个不涨阶段的到来时,应该选择那些高β系数的证券,它将成倍地放大市场收益率,为你带来高额的收益;相反在一个熊市到来或大盘某个下跌阶段到来时,你应该调整投资结构以抵御市场风险,避免损失,办法是选择那些低β系数的证券。为避免非系统风险,可以在相应的市场走势下选择那些相同或相近β系数的证券进行投资组合。比如:一支个股β系数为1.3,说明当大盘涨1%时,它可能涨1.3%,反之亦然;但如果一支个股β系数为-1.3%时,说明当大盘涨1%时,它可能跌1.3%,同理,大盘如果跌1%,它有可能涨1.3%。β系数为1,即说明证券的价格与市场一同变动。β系数高于1即证券价格比总体市场更波动。β系数低于1即证券价格的波动性比市场为低。
(二)数据的选取说明
(1)时间段的确定
一般来说对β系数的测定和检验应当选取较长历史时间内的数据,这样才具有可靠性。但我国股市17年来,也不是所有的数据均可用于分析,因为CAPM的前提要求市场是一个有效市场:要求股票的价格应在时间上线性无关,而2006年之前的数据中,股份的相关性较大,会直接影响到检验的精确性。因此,本文中,选取2005年4月到2006年12月作为研究的时间段。从股市的实际来看,2005年4月开始我国股市摆脱了长期下跌的趋势,开始进入可操作区间,吸引了众多投资者参与其中,而且人民币也开始处于上升趋势。另外,2006年股权分置改革也在进行中,很多上市公司已经完成了股改。所以选取这个时间用于研究的理由是充分的。
(2)市场指数的选择
目前在上海股市中有上证指数,A股指数,B股指数及各分类指数,本文选择上证综合指数作为市场组合指数,并用上证综合指数的收益率代表市场组合。上证综合指数是一种价值加权指数,符合CAPM市场组合构造的要求。
(3)股票数据的选取
这里用上海证券交易所(SSE)截止到2006年12月上市的4家A股股票的每月收盘价等数据用于研究。这里遇到的一个问题是个别股票在个别交易日内停牌,为了处理的方便,本文中将这些天该股票的当月收盘价与前一天的收盘价相同。
(4)无风险收益(rf)
在国外的研究中,一般以3个月的短期国债利率作为无风险利率,但是我国目前国债大多数为长期品种,因此无法用国债利率作为无风险利率,所以无风险收益率(rf)以1年期银行定期存款利率来进行计算。
(三)系数的计算过程和结果
首先打开“大智慧新一代”股票分析软件,得到相应的季度K线图,并分别查询鲁西化工(000830),首钢股份(000959),宏业股份(600128)和吉林敖东(000623)的收盘价。打开Excel软件,将股票收盘价数据粘贴到Excel中,根据公式:月收益率=[(本月收盘价-上月收盘价)/上月收盘价]×100%,就可以计算出股票的月收益率,用同样的方法可以计算出大盘收益率。将股票收益率和市场收益率放在同一张Excel中,这样在Excel表格中我们得到两列数据:一列为个股收益率,另一列为大盘收益率。选中某一个空白的单元格,用Excel的“函数”-“统计”-“Slope()函数”功能,计算出四支股票的β系数。

下面列示数据说明:
鲁西化工000830 首钢股份000959 弘业股份600128 吉林敖东000623 上证 市场收益率 市场超额收益率 市场无风险收益率
统计时间 收盘价 收益率 超额 收盘价 收益率 超额 收盘价 收益率 超额 收盘价 收益率 超额 指数
收益率 收益率 收益率 收益率
05年4月 4.51 基期 3.77 基期 3.29 基期 4.69 基期 1159.14
05年5月 3.81 -6.23% -8.65% 3.68 7.54% 5.12% 3.48 4.53% 2.11% 7.02 -7.77% -10.19% 1060.73 -2.56% -4.98% 2.42%
05年6月 3.98 8.33% 5.91% 3.35 -18.39% -20.81% 3.3 4.39% 1.97% 8.49 15.07% 12.65% 1080.93 8.03% 5.61% 2.42%
05年7月 4.76 -9.07% -11.49% 3.12 -13.10% -15.52% 3.02 -30.67% -33.09% 9.96 -11.30% -13.72% 1083.03 -8.72% -11.14% 2.42%
05年8月 3.33 -19.28% -21.70% 3.57 -12.97% -15.39% 4.11 -16.93% -19.35% 8.17 -0.87% -3.29% 1162.79 -14.16% -16.58% 2.42%
05年9月 3.45 -2.71% -5.03% 3.35 8.19% 5.87% 3.73 13.08% 10.76% 9.86 36.64% 34.32% 1155.61 11.26% 8.94% 2.32%
05年10月 3.32 -7.62% -9.94% 3.15 -10.33% -12.65% 3.51 4.66% 2.34% 8.17 27.03% 24.71% 1092.81 -1.63% -3.95% 2.32%
05年11月 3.46 -15.45% -17.77% 2.41 -9.21% -11.53% 3.38 -18.34% -20.66% 9.86 -1.68% -4.00% 1099.26 -8.00% -10.32% 2.32%
05年12月 3.48 3.41% 1.09% 2.46 -8.88% -11.20% 3.39 10.49% 8.17% 16.55 17.79% 15.47% 1161.05 9.50% 7.18% 2.32%
06年1月 3.6 45.66% 43.14% 2.75 23.67% 21.15% 3.86 3.13% 0.61% 19.25 8.28% 5.76% 1258.04 16.34% 13.82% 2.52%
06年2月 4.67 -57.66% -60.18% 2.79 -12.57% -15.09% 3.75 -19.06% -21.58% 21.73 -42.86% -45.38% 1299.03 -19.66% -22.18% 2.52%
06年3月 4.57 9.47% 6.95% 3.05 0.43% -2.09% 2.95 -3.41% -5.93% 24.51 -8.22% -10.74% 1298.29 -0.18% -2.70% 2.52%
06年4月 2.65 -5.54% -8.06% 2.96 -7.26% -9.78% 3.28 -17.55% -20.07% 50.00 -39.26% -41.78% 1440.22 -9.32% -11.84% 2.52%
06年5月 3.22 -0.23% -3.60% 2.8 -13.13% -16.50% 3.81 -1.14% -4.51% 65.34 -9.05% -12.42% 1641.3 -6.73% -10.10% 3.37%
06年6月 3.37 -21.41% -24.78% 2.84 -5.57% -8.94% 3.69 10.55% 7.18% 49.75 -0.46% -3.83% 1672.21 -8.49% -11.86% 3.37%
06年7月 3.48 21.26% 17.89% 2.91 4.21% 0.84% 4.48 8.50% 5.13% 62.3 20.00% 16.63% 1612.73 6.91% 3.54% 3.37%
06年8月 3.37 3.70% 0.33% 2.97 -8.36% -11.73% 4.78 17.47% 14.10% 74.1 -35.85% -39.22% 1658.63 0.47% -2.90% 3.37%
06年9月 3.27 14.29% 11.15% 3.13 -17.94% -21.08% 4.73 11.38% 8.24% 7.01 5.44% 2.30% 1752.42 11.82% 8.68% 3.14%
06年10月 3.17 67.50% 64.36% 3.41 10.75% 7.61% 4.39 -18.97% -22.11% 91.28 67.91% 64.77% 1837.99 28.80% 25.66% 3.14%
06年11月 3.12 -32.71% -35.85% 4.35 -4.21% -7.35% 4.2 58.86% 55.72% 60.02 -11.09% -14.23% 2099.29 4.80% 1.66% 3.14%
06年12月 3.16 24.21% 21.07% 5.01 22.30% 19.16% 4.43 52.43% 49.29% 68.28 56.81% 53.67% 2675.47 52.67% 49.53% 3.14%
鲁西化工(000830)的β系数=0.89
首钢股份(000959)的β系数=1.01
弘业股份(600128)的β系数=0.78
吉林敖东(000623)的β系数=1.59
(三)结论
计算出来的β值表示证券的收益随市场收益率变动而变动的程度,从而说明它的风险度,证券的β值越大,它的系统风险越大。β值大于0时,证券的收益率变化与市场同向,即以极大可能性,证券的收益率与市场同涨同跌。当β值小于0时,证券收益率变化与市场反向,即以极大可能性,在市场指数上涨时,该证券反而下跌;而在市场指数下跌时,反而上涨。(在实际市场中反向运动的证券并不多见)
根据上面对四只股票β值的计算分析说明:首钢股份和吉林敖东的投资风险大于市场全部股票的平均风险;而鲁西化工和宏业股份的投资风险小于市场全部股票的平均风险。那我们在具体的股票投资过程中就可以利用不同股票不同的β值进行投资的决策,一般来说,在牛市行情中或者短线交易中我们应该买入β系数较大的股票,而在震荡市场中或中长线投资中我们可以选取β值较小的股票进行风险的防御。

Ⅱ 协方差在证券收益与风险的计算中有什么作用

协方差是指两个量的相关程度的指标。如果衡量证则闭券收益的话,比如说你买的某个股票和大盘的收益算出来的协方差裤轿,这个就能说明你的股票和大盘的变动是否正相孙纯裂关,负相关,或者不相关。

Ⅲ 为什么可以用方差衡量风险

在概率论和数理统计中,方差是用来度量随机变量和其数学期望(即均值)之间的偏离程度。在概率论与数理统计中,方差是用来度量随机变量和其数学期望(即均值)之间的偏离程度的一个量。一般来说,方差越大,那么这一组数据的波动幅度也就越大,换句话说,也就是它的稳定性就要小一些。而风险投资者们进行投资,必然要关注被投资项目的风险是不是在他可接受的范围之内。如果是,那么他才会进行投资,如果超出了他能承受的范围,那么他很可能就不会冒大的风险进行投资。在市场经济的条件下,企业的风险无外乎经营风险,战略风险,财务风险,违约风险,法律风险,市场风险等。举个例子来说,风险投资者们可以通过分析企业的现金流量,净利润,每股净收益,偿债能力,营运能力,盈利能力等等指标来对一个企业做出客观的了解。这些指标一般都是年度性的,可以通过和以前年度的做一个对比,看看他们的增减变动值,从而计算出它们的方差或者是标准差。这样就可以大致了解一个企业的经营状况得一个趋向。从而让其做出更加理性的投资。因此,可以用方差来衡量风险的大小情况。

Ⅳ 两证券协方差和相关系数的计算

两证券协方差表示两种证_之间共同变动的程度:相关系数是变量之间相关程度的指标根据协方差的公式可知,协方差与相关系数的正负号相同,但是协方差是相关系数和两证券的标准差的乘积,所以协方差表示两种证_之间共同变动的程度。相关系数是协方差与两个投资方案投资收益标准差之积的比值,其计算公式为:相关系数总是在-1到+1之间的范围内变动,-1代表完全负相关了,+1代表完全正相关了,0则表示不相关。相关系数和协方差的变动方向是一致的,相关系数的负的,协方差就一定是负的。
相关系数是变量之间相关程度的指标,相关系数在0到1之间,表示两种报酬率的增长是同向的;相关系数在0到-1之间,表示两种报酬率的增长是反向的,所以说相关系数是变量之间相关程度的指标。总体来说,两项资产收益率的协方差,反映的是收益率之间共同变动的程度;而相关系数反映的是两项资产的收益率之间相对运动的状态。两项资产收益率的协方差等于两项资产的相关系数乘以各自的标准差。
协方差是一个用于测量投资组合中某一具体投资项目相对于另一投资项目风险的统计指标。其计算公式为:当协方差为正值时,这就表示了两种资产的收益率呈同方向变动;协方差为负值时,表示两种资产的收益率呈反方向变动。
总体来说,两项资产收益率的协方差,反映的是收益率之间共同变动的程度;而相关系数反映的是这两项资产的收益率之间相对运动的状态。两项资产收益率的协方差等于两项资产的相关系数乘以各自的标准差啦。

Ⅳ 股票收益率,方差,协方差计算

股票收益率=收益额/原始投资额,这一题中A股票的预期收益率=(3%+5%+4%)/3=4%。

方差计算公式:

(5)股票的风险状况是协方差吗扩展阅读:

股票收益率是反映股票收益水平的指标。投资者购买股票或债券最关心的是能获得多少收益,衡量一项证券投资收益大小以收益率来表示。反映股票收益率的高低,一般有三个指标:

1、本期股利收益率。是以现行价格购买股票的预期收益率。

2、持有期收益率。股票没有到期,投资者持有股票的时间有长有短,股票在持有期间的收益率为持有期收益率。

3、折股后的持有期收益率。股份公司进行折股后,出现股份增加和股价下降的情况,因此,折股后股票的价格必须调整。

Ⅵ 金融统计分析题目,关于方差—协方差矩阵,求股票投资组合风险

每支股票本身都有风险的存在,本人一向不提倡同时持有多支股票,若从你现在单一的层面分析的话,你可以0.6,0.3,0.1

Ⅶ 股票知识中的标准差是什么意思

股票投资中的标准差,指的就是其收益率的标准差,是投资时判断风险的一个参考数据。标准差主要是根据股票净值于一段时间内波动的情况计算而来的。一般而言,标准差愈大,表示股票净值的涨跌越剧烈,当然其潜在风险与潜在收益程度也较大。
股票的收益率标准差”是指过去一段时期内,股票每个月的收益率相对于平均月收益率的偏差幅度的大小。股票的每月收益波动越大,那么它的标准差也越大。

Ⅷ 一支股票的β系数越大,它所需要的风险溢价补偿就越小。对吗

对,股票的β值是与整个股票市场的波动相对应的,β值越大,个股的波动越小,如果某只股票的β值等于1,那么它的波动就等于市场波动,其风险也就是市场风险,其相对于整个股市的风险溢价就等于0。在A股市场上,大盘蓝筹股的β值就比较大,其风险溢价也小。

Ⅸ 某一个股票与股票市场组合的方差是什么意思

任何投资者都希望投资获得最大的回报,但是较大的回报伴随着较大的风险。为了分散风险或减少风险,投资者投资资产组合。资产组合是使用不同的证券和其他资产构成的资产集合,目的是在适当的风险水平下通过多样化获得最大的预期回报,或者获得一定的预期回报使用风险最小。 作为风险测度的方差是回报相对于它的预期回报的离散程度。资产组合的方差不仅和其组成证券的方差有关,同时还有组成证券之间的相关程度有关。为了说明这一点,必须假定投资收益服从联合正态分布(即资产组合内的所有资产都服从独立正态分布,它们间的协方差服从正态概率定律),投资者可以通过选择最佳的均值和方差组合实现期望效用最大化。如果投资收益服从正态分布,则均值和方差与收益和风险一一对应。 如本题所示,两个资产的预期收益率和风险根据前面所述均值和方差的公式可以计算如下:1。股票基金 预期收益率=1/3*(-7%)+1/3*12%+1/3*28%=11% 方差=1/3[(-7%-11%)^2+(12%-11%)^2+(28%-11%)^2]=2.05% 标准差=14.3%(标准差为方差的开根,标准差的平方是方差)2。债券基金 预期收益率=1/3*(17%)+1/3*7%+1/3*(-3%)=7% 方差=1/3[(17%-7%)^2+(7%-7%)^2+(-3%-7%)^2]=0.67% 标准差=8.2%注意到,股票基金的预期收益率和风险均高于债券基金。然后我们来看股票基金和债券基金各占百分之五十的投资组合如何平衡风险和收益。投资组合的预期收益率和方差也可根据以上方法算出,先算出投资组合在三种经济状态下的预期收益率,如下: 萧条:50%*(-7%)+50%*17%=5% 正常:50%*(12%)+50%*7%=9.5% 繁荣:50%*(28%)+50%*(-3%)=12.5%则该投资组合的预期收益率为:1/3*5%+1/3*9.5%+1/3*12.5%=9%该投资组合的方差为:1/3[(5%-9%)^2+(9.5%-9%)^2+(12.5%-9%)^2]=0.001%该投资组合的标准差为:3.08% 注意到,其中由于分散投资带来的风险的降低。一个权重平均的组合(股票和债券各占百分之五十)的风险比单独的股票或债券的风险都要低。 投资组合的风险主要是由资产之间的相互关系的协方差决定的,这是投资组合能够降低风险的主要原因。相关系数决定了两种资产的关系。相关性越低,越有可能降低风险。

Ⅹ 某一股票与市场组合的协方差是什么意思

方差描述了一组数列的波动情况,如果一个数列都是1种数,如1,1,1,1,1,1 那么它的方差为0
期望其实就是一组数的平均值
协方差是建立在方差分析和回归分析基础之上的一种统计分析方法
两个不同参数之间的方差就是协方差
相关系数r
相关系数是变量之间相关程度的指标。样本相关系数用r表示,总体相关系数用ρ表示,相关系数的取值范围为[-1,1]。|r|值越大,误差Q越小,变量之间的线性相关程度越高;|r|值越接近0,Q越大,变量之间的线性相关程度越低。
相关系数 又称皮(尔生)氏积矩相关系数,说明两个现象之间相关关系密切程度的统计分析指标。
相关系数用希腊字母γ表示,γ值的范围在-1和+1之间。
γ>0为正相关,γ<0为负相关。γ=0表示不相关;
γ的绝对值越大,相关程度越高。
两个现象之间的相关程度,一般划分为四级:
如两者呈正相关,r呈正值,r=1时为完全正相关;如两者呈负相关则r呈负值,而r=-1时为完全负相关。完全正相关或负相关时,所有图点都在直线回归线上;点子的分布在直线回归线上下越离散,r的绝对值越小。当例数相等时,相关系数的绝对值越接近1,相关越密切;越接近于0,相关越不密切。当r=0时,说明X和Y两个变量之间无直线关系。通常|r|大于0.75时,认为两个变量有很强的线性相关性。
相关系数的计算公式为:
其中xi为自变量的标志值;i=1,2,…n;■为自变量的平均值,
为因变量数列的标志值;■为因变量数列的平均值。
为自变量数列的项数。对于单变量分组表的资料,相关系数的计算公式为:
其中fi为权数,即自变量每组的次数。在使用具有统计功能的电子计算机时,可以用一种简捷的方法计算相关系数,其公式为:
使用这种计算方法时,当计算机在输入x、y数据之后,可以直接得出n、■、∑xi、∑yi、∑■、∑xiy1、γ等数值,不
必再列计算表。
参考资料:网络