Ⅰ 已知某股票的一年以後價格X服從對數正態分布,當前價格為十元,且期望為15,方差為4,。求其連續復合年收益
鑒於以上3個樓層的搞笑,我算了下看圖
Ⅱ 為什麼說股票價格服從對數正態分布
我們可以假設連續復利,用lnS1-lnS0來近似股票的收益(S1-S0)/S0,而且根據集合布朗運動可知,此收益是服從正態分布的。
Ⅲ 如何理解 Black-Scholes 期權定價模型
Black-Scholes-Merton期權定價模型(Black-Scholes-Merton Option Pricing Model),即布萊克-斯克爾斯期權定價模型。
1997年10月10日,第二十九屆諾貝爾經濟學獎授予了兩位美國學者,哈佛商學院教授羅伯特·默頓(Robert Merton)和斯坦福大學教授邁倫·斯克爾斯(Myron Scholes),同時肯定了布萊克的傑出貢獻。
斯克爾斯與他的同事、已故數學家費雪·布萊克(Fischer Black)在70年代初合作研究出了一個期權定價的復雜公式。與此同時,默頓也發現了同樣的公式及許多其它有關期權的有用結論。默頓擴展了原模型的內涵,使之同樣運用於許多其它形式的金融交易。
Ⅳ 為什麼假設股票價格服從正態分布是不現實的
有一個最基本的想法,如果股票符合正態分布,那麼,會怎樣?因為趨勢已定,所有人都可以在股票價格變動前預測到股票將來的價格走勢。投資將成為一件沒有任何意義的事情。
另外,股票價格會受到企業的發展、經濟的環境、政策的走勢以及人們的心理波動影響。所以,其價格出現非規律變化、非正太分布的波動是非常正常的。
Ⅳ 股市K線中的正態分部是什麼
一種概率分布。正態分布是具有兩個參數μ和σ2的連續型隨機變數的分布,第一參數μ是服從正態分布的隨機變數的均值,第二個參數σ2是此隨機變數的方差,所以正態分布記作N(μ,σ2 )。 服從正態分布的隨機變數的概率規律為取與μ鄰近的值的概率大 ,而取離μ越遠的值的概率越小;σ越小,分布越集中在μ附近,σ越大,分布越分散。正態分布的密度函數的特點是:關於μ對稱,在μ處達到最大值,在正(負)無窮遠處取值為0,在μ±σ處有拐點。它的形狀是中間高兩邊低 ,圖像是一條位於x軸上方的鍾形曲線。當μ=0,σ2 =1時,稱為標准正態分布,記為N(0,1)。μ維隨機向量具有類似的概率規律時,稱此隨機向量遵從多維正態分布。多元正態分布有很好的性質,例如,多元正態分布的邊緣分布仍為正態分布,它經任何線性變換得到的隨機向量仍為多維正態分布,特別它的線性組合為一元正態分布。
正態分布最早由A.棣莫弗在求二項分布的漸近公式中得到。C.F.高斯在研究測量誤差時從另一個角度導出了它。P.S.拉普拉斯和高斯研究了它的性質。
生產與科學實驗中很多隨機變數的概率分布都可以近似地用正態分布來描述。例如,在生產條件不變的情況下,產品的強力、抗壓強度、口徑、長度等指標;同一種生物體的身長、體重等指標;同一種種子的重量;測量同一物體的誤差;彈著點沿某一方向的偏差;某個地區的年降水量;以及理想氣體分子的速度分量,等等。一般來說,如果一個量是由許多微小的獨立隨機因素影響的結果,那麼就可以認為這個量具有正態分布(見中心極限定理)。從理論上看,正態分布具有很多良好的性質 ,許多概率分布可以用它來近似;還有一些常用的概率分布是由它直接導出的,例如對數正態分布、t分布、F分布等。
Ⅵ 畢蘇期權定價模式
畢蘇期權定價模式是一個參照模型,也叫B-S定價模式,是指如果某權證的價格偏離了該模型的計算值,就有無風險套利的機會。
一、畢蘇期權定價模型中無風險利率必須是連續復利形式。一個簡單的或不連續的無風險利率(設為r0)一般是一年復利一次,而r要求利率連續復利。r0必須轉化為r方能代入上式計算。兩者換算關系為:r = ln(1 + r0)或r0=Er-1。例如r0=0.06,則r=ln(1+0.06)=0.0583,即100以5.83%的連續復利投資第二年將獲106,該結果與直接用r0=0.06計算的答案一致。
二、期權有效期T的相對數表示,即期權有效天數與一年365天的比值。如果期權有效期為100天,則T=100/365=0.274 。
Ⅶ 如果用matlab驗證股票的收盤價符合對數正態分布
先導入數據,然後取收盤價的對數值即y=ln(y)
clc;clear
y=ln(y)
Std=std(y) %標准差
[F,XI]=ksdensity(y)
figure(1)
plot(XI,F,'o-')
x =randn(300000,1);
figure(2)
[f,xi] = ksdensity(x);
plot(xi,f);
畫出概率分布圖
ksdensity -------------------- Kernel smoothing density estimation.
表示核平滑密度估計